
4.3.1 D-1 トレンチの地質層序

4.3.1.1 層相区分

D-1 トレンチの地層は、花崗斑岩とそれを覆う第四系からなり、第四系は層相から下位より①層~⑨層に区分した。【資料 4.3.1.1-1,2】

①層は、よく締まった淘汰の悪い砂礫からなる。②層は、塊状で締まった砂質シルト~シルト質砂からなり、くさり礫を多く含み、腐植質シルトを含む。③層は、砂礫主体で、シルト層やシルト質砂層を層状~レンズ状に挟在する。④は、③層上端の酸化帯からなる。⑤層は、堆積構造の違いから上部と下部に細区分される。⑤層下部は、シルト質砂礫主体で、シルト層~シルト質砂層が不連続に層状を呈し、腐植質シルトを含む。北壁面の東方に向かって基底面が低くなり、層厚が厚くなっている。⑤層上部は、シルト質砂礫主体で、腐植質シルトを含み、比較的水平で一定の層厚を示す。⑤層下部は、下位層を大きく削りこみ不整合関係で接する。⑥層は、腐植質砂質シルト~シルト質砂からなり、木片を多く含む。⑦層は、礫混じり砂質シルト~礫混じりシルト質砂からなる。⑧層は、シルト質砂を基質とする砂礫からなり、一部に成層構造もみられる。⑨層は、礫混じり砂質シルトからなる。

	地層名	A =□	層相	年代	指標	# 挂左 <i>比</i> 舠亚
	地眉石	色調	/首11月	テフラ	花粉	堆積年代解釈
	9層	褐~にぶ ・い黄褐	ジルト混じり砂を主体。 一般混じり砂質シルト。下位層とは 平行な不整合面で接する	_	-	
post	- ⑦層 8層	褐~黄橙	砂質シルトを層状~レ 砂礫主体。基質はシルト質砂。部分的に ンズ状に挟む。 成層構造が見られる。下位層とは平行な 不整合面で接する		-	MIS4以降
⑦層		褐~褐灰	礫混じり砂質シルト〜礫混じりシルト質砂。下位層とは平行な不整合面で接する	DKP降灰層準を 含む(約59~58ka)		
6層		灰~暗灰	腐植質砂質シルト~シルト質砂。木片を多く含む。 下位層とは平行な不整合面で接する	-		MIS5a∼b
	上部	灰白~浅黄橙	シルト質砂礫主体。	K-Tz降灰層準を 含む(約95ka)	-	MIS5c
⑤層	下部	灰白~浅黄橙	シルト質砂礫主体。シルト〜シルト質砂層が不連続に層状を呈する。③層を削剥して不整合で接する	美浜テフラ(127.6ka) の降灰層準を含む	温暖期の花粉を含む	MIS5e
	④:③層上端の酸化帯	褐	③層上端に分布する			
3層		浅黄橙~橙	砂礫主体。シルト層〜シルト質砂層が不連続に層状〜レンズ状を呈する。下位層を削剥した不整合で接する	MIS6のテフラを 含む	-	MIS6以前
②層		にぶい橙~灰白	砂質シルト~シルト質砂。塊状を呈する。くさり礫を多く含む	-	温暖期の花粉を含む	
①層		にぶい赤褐〜明黄褐	砂礫主体。淘汰が悪い。よく締まっている	-		

4.3.1.2 テフラ分析

D-1トレンチでは①層から\$層を対象として,テフラ分析を実施した。分析は10cmピッチを基本とした連続サンプリングで行い,⑦層からDKP(約 $5.9\sim5.8$ 万年前,第四紀後期更新世;入谷他(2005))が,\$0層上部から#8-Tz(約\$9.5万年前,第四紀後期更新世;町田他(2003))が検出された。

また、⑤層下部から普通角閃石が検出された。基盤岩の鉱物組成分析結果によれば基盤岩には普通角閃石が含まれないことから、⑤層下部の普通角閃石はテフラ起源のものであると判断される。【資料 4.3.1.2-1~10】

以下, K 断層の活動性評価にとって特に重要となる⑤層下部の堆積年代を明らかにする ため, 文献調査, 鉱物の主成分分析等を行った結果を示す。

(1) ⑤層下部テフラ等の降灰年代に関する検討

⑤層下部テフラの降灰年代を明らかにするために、敦賀発電所付近に降灰した可能性の あるテフラについて検討した。

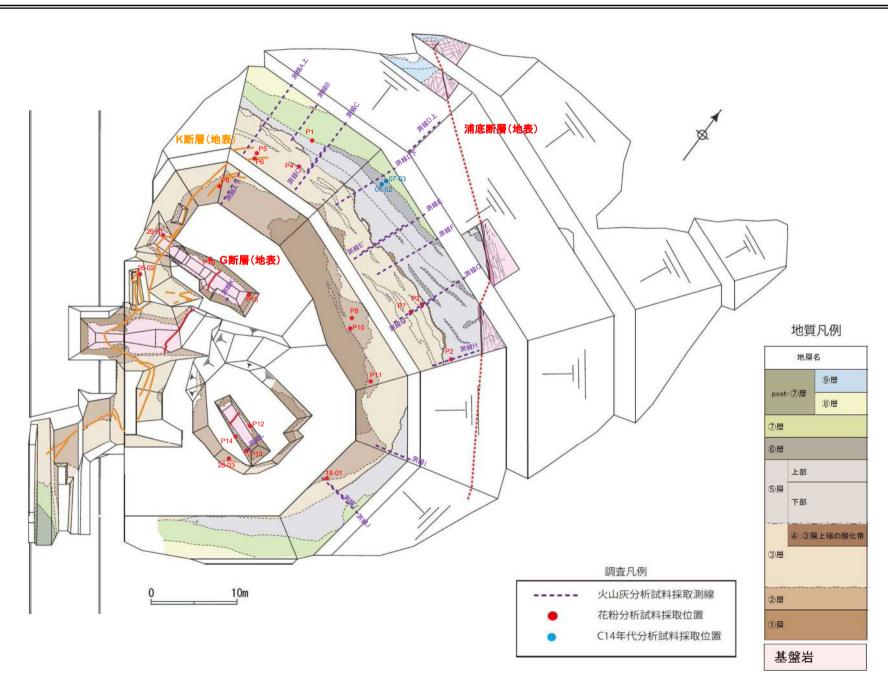
上記について、⑤層下部テフラに対比されるテフラを特定するため、主成分分析による 対比を行った。

普通角閃石の主成分は、DBP、hpm2、hpm1 及び DOP については小滝他(2011)を参照し、DHP、DYP、DMP、美浜テフラ及び NEXCO80 (Lower)のテフラについては今回測定を行った。美浜テフラについては、Yasuno(1991)に示される気山露頭及びその付近で実施したボーリング調査で採取した試料を用いた。なお、美浜テフラと NEXCO80 (Lower)については斜方輝石が確認されたことから、斜方輝石の屈折率の比較も実施した。

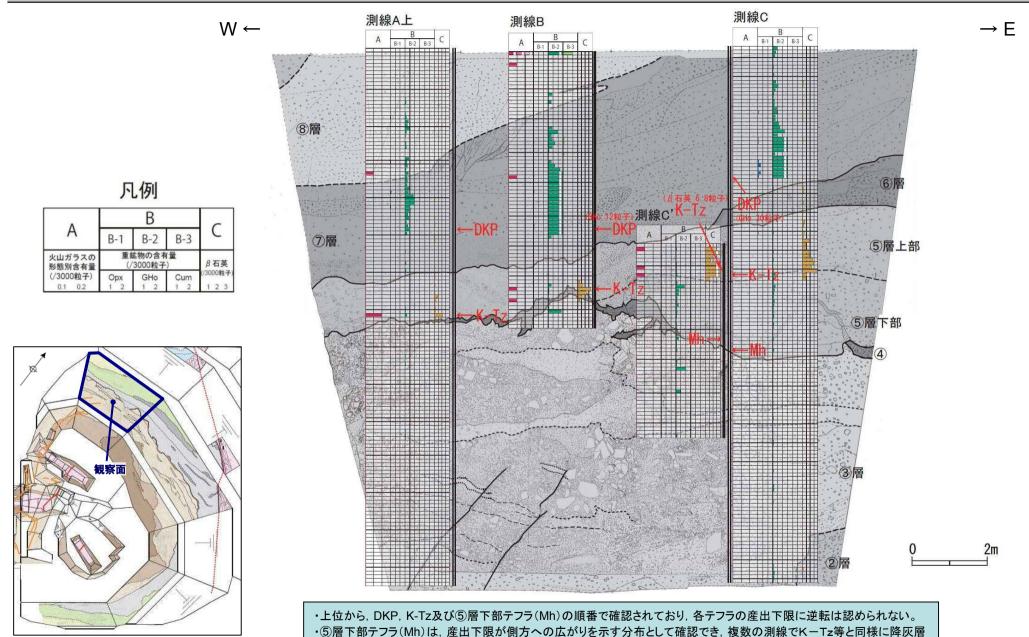
普通角閃石の主成分等の対比の結果,⑤層下部テフラ,美浜テフラ及び NEXCO80 (Lower) が酷似していることから,⑤層下部テフラは美浜テフラ及び NEXCO80 (Lower) に対比される。したがって,⑥層下部テフラは BT37 に対比される。【資料 4.3.1.2-14~22】 BT37 については,長橋他(2004)によれば,琵琶湖高島沖コアの堆積速度とテフラ年代から,降灰年代が 127.6ka 前であるとされている【資料 4.3.1.2-23】。なお,加藤(私信)によれば,美浜テフラのフィッショントラック年代値は,0.16±0.05Ma とされている。

さらに、当社が敦賀湾で実施した海上ボーリングにおいて、 MIS5e に相当するコアの中から検出された普通角閃石について、主成分分析等を行った結果、⑤層下部テフラに対比された。【資料 4.3.1.2-24,25】

以上のことから、⑤層下部テフラの降灰年代は約 12.7 万年前(第四紀後期更新世)であると判断される。

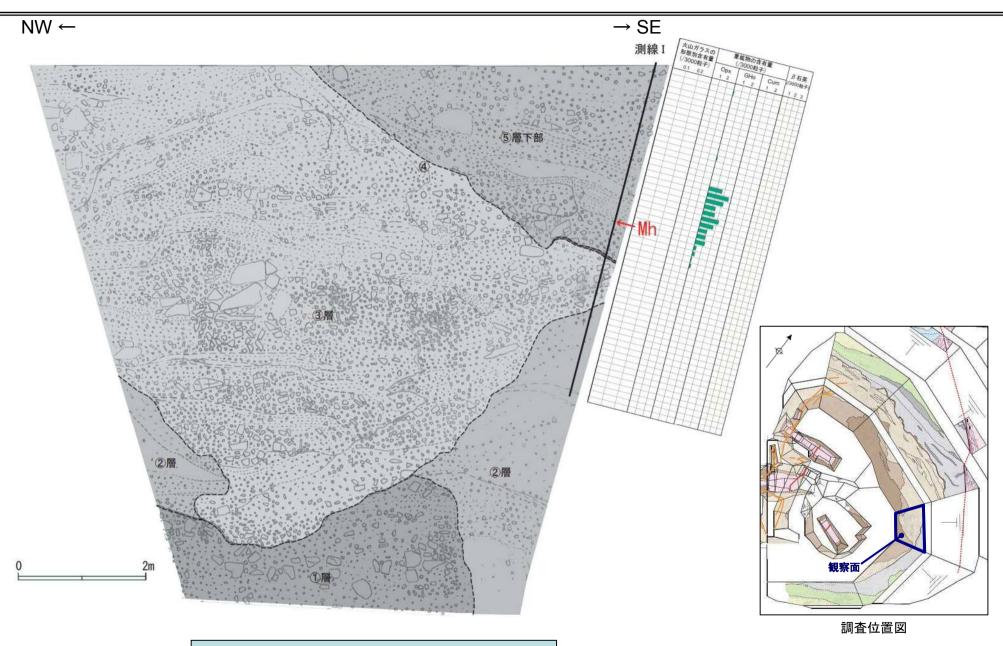

③層に含まれる普通角閃石については、海上ボーリングの MIS6 に相当するコアの中から検出された普通角閃石と主成分の対比を行った。海上ボーリングの普通角閃石の主成分の分布は、概ね2つのグループに分けられ、その1つが③層の普通角閃石と一致した。したがって、③層は MIS6 に対比される。【資料4.3.1.2-26】

(2) ⑤層下部の降灰層準に関する検討

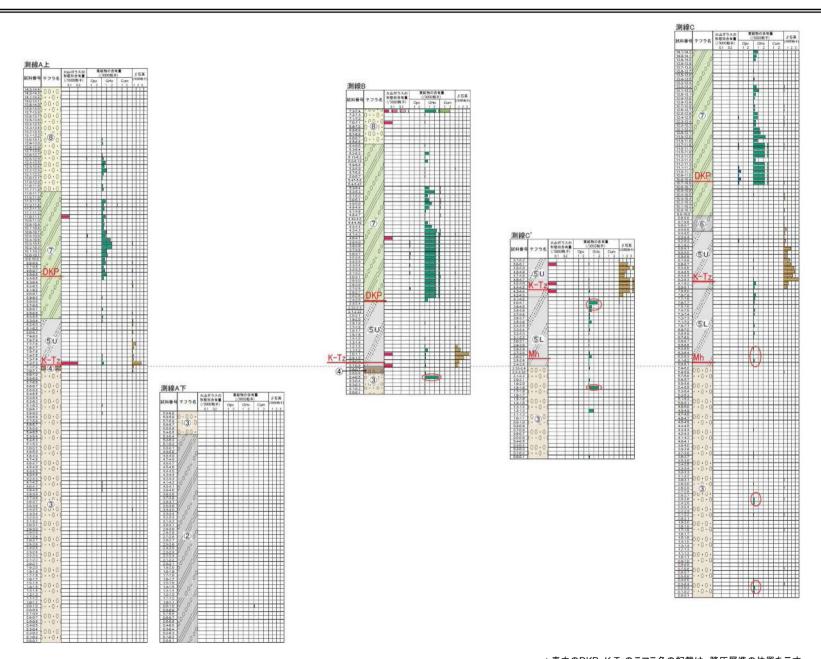

・ D-1 トレンチ内の複数の測線で確認した⑤層下部の普通角閃石については、主成分化 学組成がいずれも同じ範囲に値が集中しており、同一のテフラ起源であると判断さ れる。【資料 4.3.1.2-27】

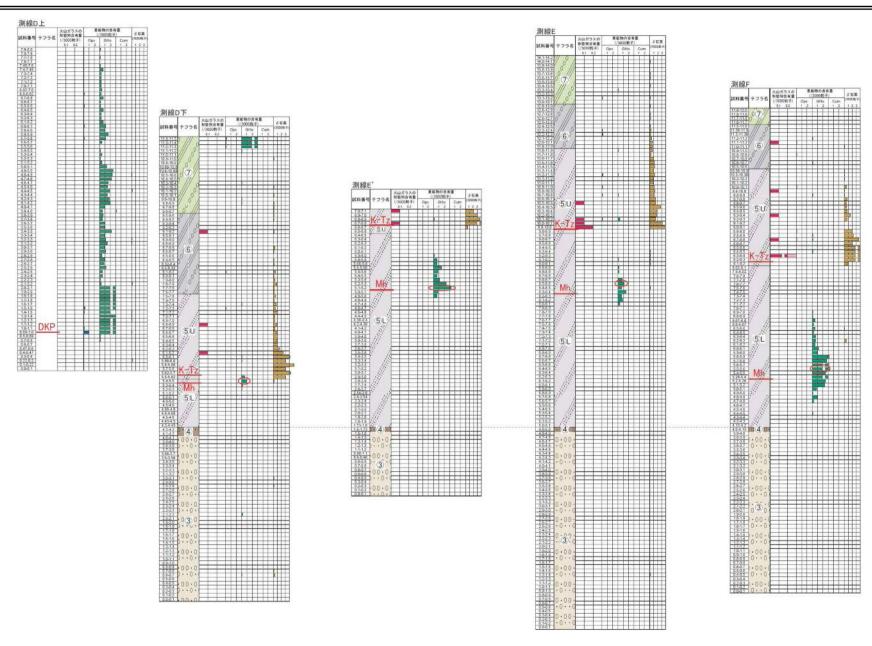
- ・ ③層に検出された普通角閃石については、主成分分析に基づく対比の結果、⑤層下 部の普通角閃石とは有意な差が認められることから、異なるテフラであると判断さ れる。【資料 4.3.1.2-28】
- ・ D-1 トレンチ内の複数の測線で実施した連続サンプリングによるテフラ分析の結果, 上位から, DKP, K-Tz 及び⑤層下部テフラの順番で確認されており, 各テフラの産 出下限に逆転は認められない。
- ・ ⑤層下部テフラについては、⑤層下部の地層において実施した連続サンプリングに おいてその産出下限が側方への広がりを示す分布として確認でき、複数の測線で K-Tz 等と同様に降灰層準を示すピークも認められている。

以上のことから、⑤層下部テフラの降灰層準を認定した。

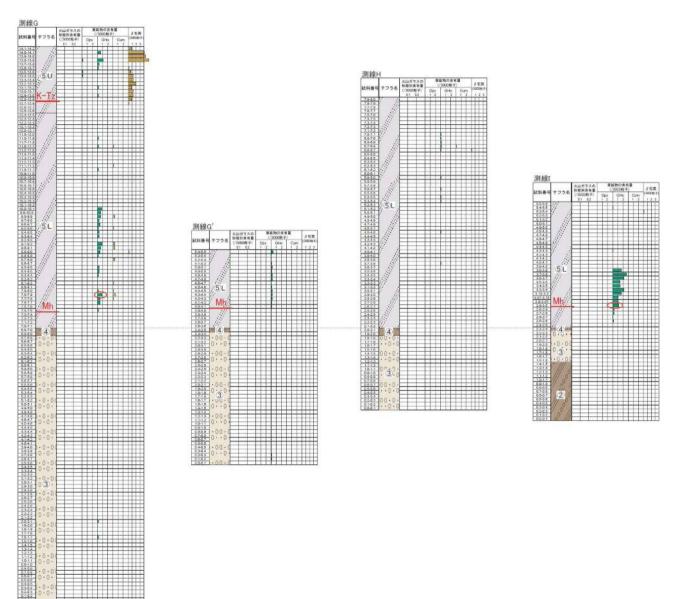


4.3.1.2 - 2

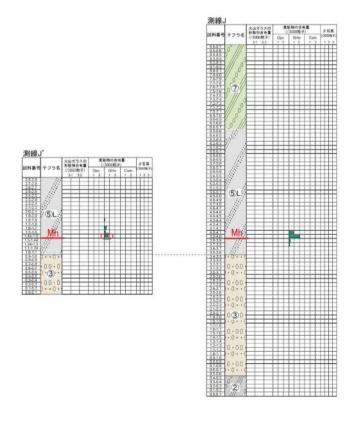



準を示すピークも認められている。

・③層中からも、微量ながら普通角閃石が検出された。



⑤層下部の基底付近から⑤層下部テフラ(Mh)が検出された。



- *表中のDKP、K-Tzのテフラ名の記載は、降灰層準の位置を示す。
- *○は、主成分分析の試料採取位置を示す。

^{*}表中のDKP、K-Tzのテフラ名の記載は、降灰層準の位置を示す。

^{*○}は、主成分分析の試料採取位置を示す。

岩石名	試料名	項目					銀	広物名					計
石口名		垻日	石英	斜長石	カリ長石	単斜輝石	斜方輝石	黒雲母	白雲母	不透明鉱物	スメクタイト	普通角閃石	訂
	0 1	カウント数	1367	891	1315	-	-	12	-	-	-	-	3585
田彦口士出山	Gr-1	含有量(%)	38. 1	24. 9	36. 7	_	_	0.3	_	_	_	—	100
黒雲母花崗岩	0. 0	カウント数	906	560	884	-	-	28	-	0	-	-	2378
	Gr-2	含有量(%)	38. 1	24.8	36. 6	_	_	1. 2	_	0	_	_	100
	0 1	カウント数	911	500	719	-	-	53	-	5	-	-	2188
————————————————————————————————————	含有量(%)	41.6	22.9	32. 9	_	_	2. 4	_	0.2	_	_	100	
	カウント数	756	546	728	-	-	39	-	6	-	-	2075	
	Gp-2	含有量(%)	36. 4	26. 3	35. 1	_	_	1. 9	_	0.3	_	_	100
		カウント数	1118	675	1264	-	-	24	6	13	-	-	3100
	Ap-1	含有量(%)	36. 1	21.8	40.8	_	_	0.8	0.2	0.4	_	_	100
アプライト	Ap-2	カウント数	750	500	707	-	-	30	5	8	-	-	2000
		含有量(%)	37. 5	25. 0	35. 4	_	_	1. 5	0.3	0.4	_	_	100
Do-1 - ドレライト Do-2 -	F 1	カウント数	-	1415	_	297	30	-	-	149	861	-	2752
	Do-I	含有量(%)	_	51.4	_	10.8	1.1	_	_	5. 4	31. 3	_	100
	D 0	カウント数	-	1182	_	108	32	-	-	109	569	-	2000
	含有量(%)	_	59. 1	_	5. 4	1.6	_	-	5. 5	28. 5	-	100	

- ・敷地内で採取した試料について、薄片あるいは研磨した岩石スラブを顕微鏡下で観察して鉱物組成比を求めた。
- ・その他微量成分としては、花崗岩類はジルコン、リン灰石、ドレライトは、方解石、沸石である。
- ・以上のように、基盤岩はいずれも普通角閃石を含んでいない。

敷地周辺の火山灰(新編火山灰アトラス)

[1] 三瓶山・大山周辺

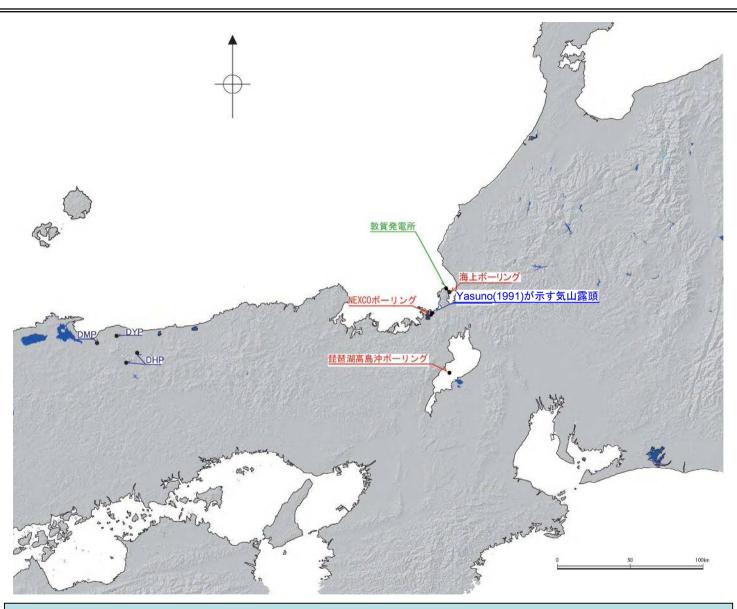
火山・テフラ名	紀号	年代 測定方法	堆積様式と層相	分布・体積	A V	注・[対比・他の名称]
大山荒田 131,38)	DAP1		pfa	E (S) 50 km	3? 4-5	
鬼界葛原32)	K-Tz	95	afa(風化)			本文・表 3.1-1 参照.
阿多32)	Ata	105~110	同上			本文・表 3.1-2 参照.
三瓶木次1.15,17)	SK	110~115 ST	pfl, pfa	ENE 900 km ⊠ 2.2-3	5 6	[古志原] ⁹⁾ ,本文参照。 漂着軽石は越前海岸,能 登・男鹿半島に分布 ^{17,18)} 。

記号	主 な 鉱 物	火 山 タイプ	ガ ラ ス n	opx 7	ho, cum	模式地・その他
DAP1	ho, opx, (bi)			1.700-1.706	1.675-1.689	関金町荒田
K-Tz	qt	bw	1.496-1.499			八束村宮城
Ata	(opx)	bw	1.508-1.510	1.706-1.708		同上
SK	bi;qt	pm	1.494-1.498 (1.497)			木次町寺領、松江市古志原

火山・テフラ名	記号	年代	測定方法	堆積様式と層相	分布・体積	Α	V	注・ [対比・他の名称]
大山蒜山原 ⁷⁾ 大山松江 ⁷⁾	DHP DMP	<130	ST	<u>pfa</u> , pfl pfa	E 200 km W 80 km E 50 km? ⊠ 3.2-1	4	5-6 5-6	pfl は [旧奈和] ¹⁹ . 直下に最終間氷期海成 層 ⁷ .

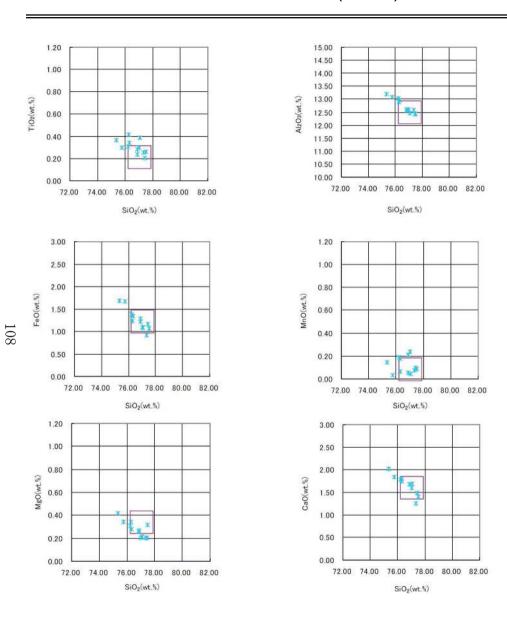
1) 松井・井上 (1971), 2) 草野・中山 (1999), 3) 林 (1991), 4) 三浦・林 (1991), 5) 林・三浦 (1987), 6) 服部ほか (1983), 7) 町田・(1986), 14) 竹本ほか (1987), 15) 町田ほか (1985), 16) 津久井・棚山 (1981), 17) 豊蔵ほか (1991), 18) 白石ほか (1992), 19) 荒川 (1984), Ooi (1992), 27) 加藤ほか (1996), 28) 佐護・町田 (1996), 29) 愛鷹ローム団研グループ (1969), 30) 富趣ほか (1999), 31) 石賀 (1997a), 32)

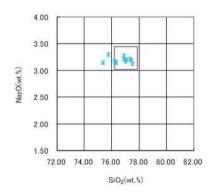
記号	主 な 鉱 物	火 山 ガ ラ ス タイプ n	opx 7	ho, cum n ₂	模式地・その他
DHP DMP	ho. bi ho. cum, (bi, opx)			1.673-1.679 1.670-1.676 (1.673) cum1.656-1.664 (1.659)	八束村蒜山高校 米子市岡成上泉,松江市古志 原

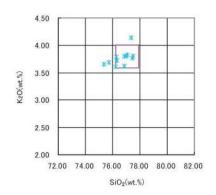

新井 (1979), 8) | 本久井 (1984), 9) 党満ほか (2002), 10) 佐治ほか (1975), 11) 町田・新井 (1976), 12) - 森山原団研ゲループ (1973), 13) 林・三油 20) 野村・田中 (1987), 21) 竹村・榎原 (1987), 22) 竹木 (1991), 23) 町田ほか (1991), 24) 福沢・Zolitschka (2000), 25) 吉川ほか (1986), 26) 石質 (1997b), 33) 木村ほか (1999), 34) 福岡・松井 (2002), 35) 野村ほか (1995), 36) 岡田・石質 (2000),

テ フ ラ	記号	給源火山	堆積様式	年代 ka(測定方法)	模式地	対 比
大山別所1.5)	DBP	大山	pfa	MIS 6	八東村三谷川	大山南東麓に分 布
大山 h2 ^{& 4.5)}	Dh2	大山	pfa	MIS 7-6	倉吉市中野・大河 内奥	大山東〜南東麓 に分布
大山 hI ²-٤-8>	Dh1	大山	pfa	230±70 (FT) ³⁾ , MIS 7-6	倉吉市中野・大河 内奥	大山東方へ広く 分布
大山淀江(大山檜谷)4.8	DYP	大山	pfa	170±60 (FT) ³³ , MIS 7-6, ほかの大山テフラとの層位関 係不明	赤崎町小田股南	大山から北方に 分布
大山奥津1.59	DOP	大山	pfa	190±60 (FT)®, Ata-Thの 上位®	八東村三谷川	大山東方へやや 広く分布

記号	主 な 鉱 物	火山ガラス タイプ n	opx 7	ho, cum	₹	Ø	他
DBP	ho, opx, bi		1.703-1.705	1.672-1.677			
Dh2	ho, (bi)			1.673-1.679	hpm 2		
Dh1	ho. (cum, bi, opx)			1.670-1.677; cum1.660-1.664	hpm I		
DYP	ho, opx, bi		1.703-1.707	1.671-1.676			
DOP	ho, opx, (bi, cum)		1.702-1.706	1.670-1.675; cum1.660-1.664			


1) 石質 (1997a), 2) 岡田 (1996), 3) 木村ほか (1999), 4) 石質 (1997b), 5) 岡田・石賀 (2000).


町田洋, 新井房夫, 2003, 新編火山灰アトラス「日本列島とその周辺」, 東京大学出版会, 336p



- ・当社が普通角閃石の主成分分析等を実施したテフラの試料採取位置を示す。
- ・Yasuno(1991)が示す気山露頭では美浜テフラが、NEXCOボーリングではNEXCO80(Lower)が、琵琶湖高島沖ボーリングではBT37が検出されている。また、図中の海上ボーリングは当社が敦賀湾で実施した海上ボーリングの位置を示す。

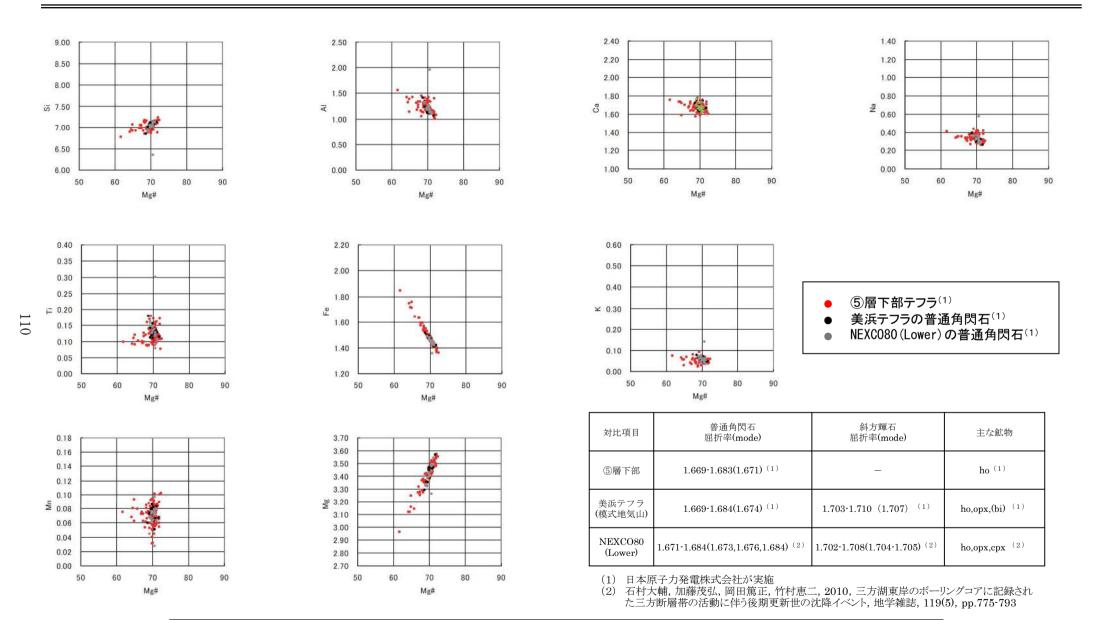
NEXCO80(Lower) と BT37 の火山ガラスの主成分分析結果

※ NEXCO80 (Lower)の火山ガラス(1)

□ BT37の火山ガラス

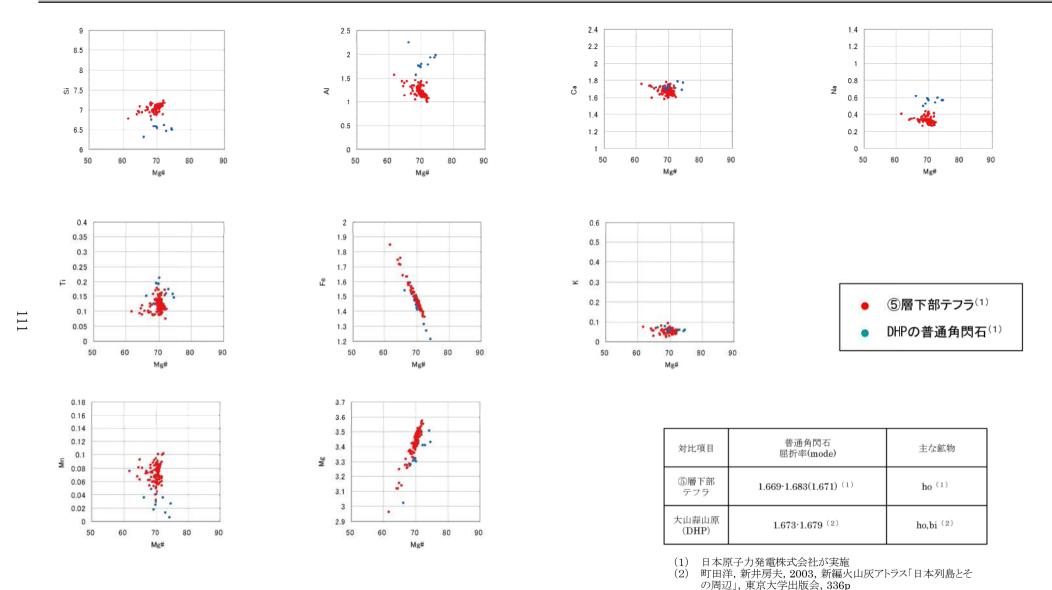
対比項目	普通角閃石 屈折率(mode)	斜方輝石 屈折率(mode)	火山ガラス 屈折率(mode)	斜方輝石:普通角閃石	主な鉱物
NEXCO80 (Lower)	1.671-1.684 (1.673,1.676,1.684) (2)	1.702-1.708 (1.704-1.705) (2)	1.502-1.508 (1.504) ⁽²⁾	17:70 (2)	ho,opx,cpx (2)
BT37	1.6689-1.6824 (1.671) ⁽³⁾	1.7002-1.7084 (1.708) ⁽³⁾	1.499-1.524 (1.501-1.509) (3) 1.501-1.507 (1.502-1.505) (4)	13:62 (3)	ho,opx (bi,cpx,qt) (3)

- (1) 日本原子力発電株式会社が実施
- (2) 石村大輔, 加藤茂弘、岡田篤正, 竹村恵二, 2010, 三方湖東岸のボーリングコアに記録された三方断層帯の活動に伴う後期更新世の沈降イベント, 地学雑誌, 119(5), pp.775-793
 (3) Satoguchi Yasufumi , Nagahashi Yoshitaka , Furusawa Akira , Yoshikawa Shusaku , Inouchi
- (3) Satoguchi Yasufumi, Nagahashi Yoshitaka, Furusawa Akira, Yoshikawa Shusaku, Inouchi Yoshio, 2008, The Middle Pleistocene to Holocene tephrostratigraphy of the Takashima-oki core from Lake Biwa, central Japan, Journal of geosciences, Osaka City University 51, 47-58
- (4) 吉川周作, 井内美郎, 1991, 琵琶湖高島沖ボーリングの火山灰層序, 地球科学, 45(2), pp.81-100
- (5) 長橋良隆, 吉川周作, 宮川ちひろ, 内山高, 井内美郎, 2004, 第四紀研究, 43(1), pp. 15-35

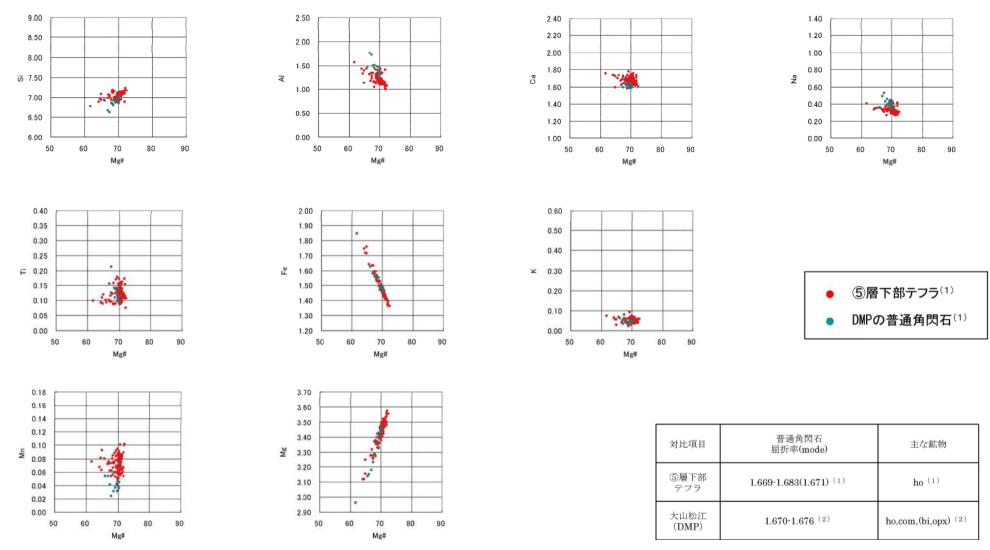

敷地周辺の広域テフラの対比表

対比項目	年代ka (測定方法)	普通角閃石 主成分化学組成	普通角閃石 屈折率(mode)	斜方輝石 屈折率(mode)	火山ガラス 主成分化学組成	火山ガラス 屈折率(mode)	斜方輝石:普通角閃石	主な鉱物
⑤層下部テフラ	_	資料4.3.1.2 - 13,15~22,25,27,28 ⁽¹⁾	1.669-1.683(1.671) (1)	_	_	-	_	ho ⁽¹⁾
美浜テフラ (模式地気山)	_	資料4.3.1.2 - 15 ⁽¹⁾	1.669-1.684(1.674) (1)	1.703-1.710 (1.707) (1)	_	_	_	ho,opx,(bi) (1)
NEXCO80 (Lower)	_	資料4.3.1.2 - 15 ⁽¹⁾	1.671-1.684(1.673,1.676,1.684) (2)	1.702-1.708(1.704-1.705) (2)	資料4.3.1.2 - 13 ⁽¹⁾	1.502-1.508(1.504) (2)	17 : 70 (2)	ho,opx,cpx (2)
BT37	127.6(ST) (3)	_	1.6689-1.6824(1.671) (4)	1.7002-1.7084(1.708) (4)	資料4.3.1.2 - 13 ⁽³⁾	1.499-1.524(1.501-1.509) (4) 1.501-1.507(1.502-1.505) (5)	13:62 (4)	ho,opx(bi,cpx,qt) (4)
大山蒜山原 (DHP)	_	資料4.3.1.2 - 16 ⁽¹⁾	1.673-1.679 (6)	_	_	_	_	ho,bi ⁽⁶⁾
大山松江 (DMP)	<130(ST) (6)	資料4.3.1.2 - 17 ⁽¹⁾	1.670-1.676 ⁽⁶⁾	_	_	_	=	ho,com,(bi,opx) (6)
大山別所 (DBP)	MIS6 (6)	資料4.3.1.2 - 18 ⁽⁷⁾	1.672-1.677 ⁽⁶⁾ 1.675-1.681(1.679) ⁽⁷⁾	1.703-1.705 ⁽⁶⁾ 1.701-1.705(1.703) ⁽⁷⁾	_	_	19.9 : 71.7 (7)	ho,opx,bi (6)
大山h2 (hpm2)	MIS7-6 ⁽⁶⁾	資料4.3.1.2 - 19 ⁽⁷⁾	1.673-1.679 ⁽⁶⁾ 1.673-1.681(1.677) ⁽⁷⁾	1.702-1.706(1.703) (7)	_	_	4.3:73.3 (7)	ho,(bi) (6)
大山h1 (hpm1)	203±70(FT) (6)	資料4.3.1.2 - 20 ⁽⁷⁾	1.670-1.677 ⁽⁶⁾ 1.670-1.684(1.672-1.673) ⁽⁷⁾	_	_	_	3.8 : 87.6 (7)	ho,(cum,bi,opx) (6)
大山淀江 (DYP)	170±60(FT) (6)	資料4.3.1.2 - 21 ⁽¹⁾	1.671-1.676 (6)	1.703-1.707 (6)	_	_	_	ho,opx,bi (6)
大山奥津 (DOP)	190±60(FT) (6)	資料4.3.1.2 - 22 ⁽⁷⁾	1.670-1.675 ⁽⁶⁾ 1.670-1.682(1.673) ⁽⁷⁾	1.702-1.706 ⁽⁶⁾ 1.702-1.706(1.704) ⁽⁷⁾	_	_	10.8 : 74.4 (7)	ho,opx,(bi,cum) (6)
H17原電海上 ボーリング No.2孔MIS5e相当	_	資料4.3.1.2 - 25 (1)	1.669-1686(1.670-1.674) (1)	-	_	-	_	ho,opx (1)

<引用文献>

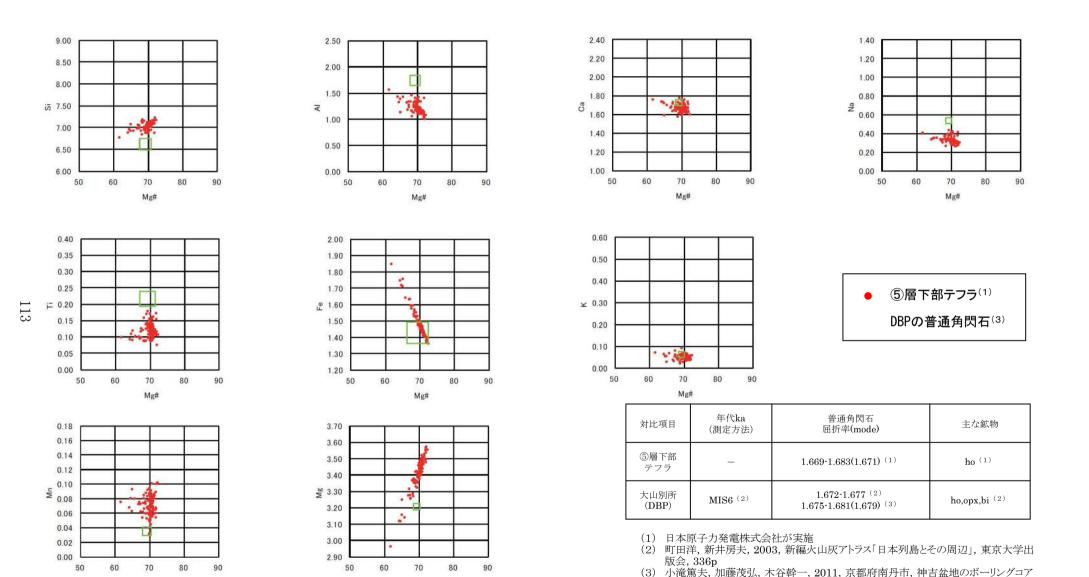

- (1) 日本原子力発電株式会社が実施
- (2) 石村大輔, 加藤茂弘, 岡田篤正, 竹村恵二, 2010, 三方湖東岸のボーリングコアに記録された三方断層帯の活動に伴う後期更新世の沈降イベント, 地学雑誌, 119(5), pp.775-793
- (3) 長橋良隆, 吉川周作, 宮川ちひろ, 内山高, 井内美郎, 2004, 近畿地方および八ヶ岳山麓における過去の43万年間の広域テフラの層序と編年-EDS分析による火山ガラス片の主要成分化学組成一, 第四紀研究, 43(1), pp.15-35
- (4) Satoguchi Yasufumi, Nagahashi Yoshitaka, Furusawa Akira, Yoshikawa Shusaku, Inouchi Yoshio, 2008, The Middle Pleistocene to Holocene tephrostratigraphy of the Takashima-oki core from Lake Biwa, central Japan, Journal of geosciences, Osaka City University 51, pp.47-58
- (5) 吉川周作, 井内美郎, 1991, 琵琶湖高島沖ボーリングの火山灰層序, 地球科学, 45(2), pp.81-100
- (6) 町田洋, 新井房夫, 2003, 新編火山灰アトラス「日本列島とその周辺」, 東京大学出版会, 336p
- (7) 小滝篤夫, 加藤茂弘, 木谷幹一, 2011, 京都府南丹市, 神吉盆地のボーリングコア中の大山火山起源の中期更新世テフラとその意義, 第四紀研究, 50(1), pp.35-48

D-1トレンチ テフラ分析(⑤層下部テフラ、美浜テフラ 及び NEXCO80(Lower) の普通角閃石の主成分分析)


⑤層下部テフラの普通角閃石は、美浜テフラ 及び NEXCO80(Lower) の普通角閃石に酷似していることから、 美浜テフラ 及び NEXCO80(Lower) に対比される。

D-1トレンチ テフラ分析(⑤層下部テフラとDHPの普通角閃石の主成分分析)

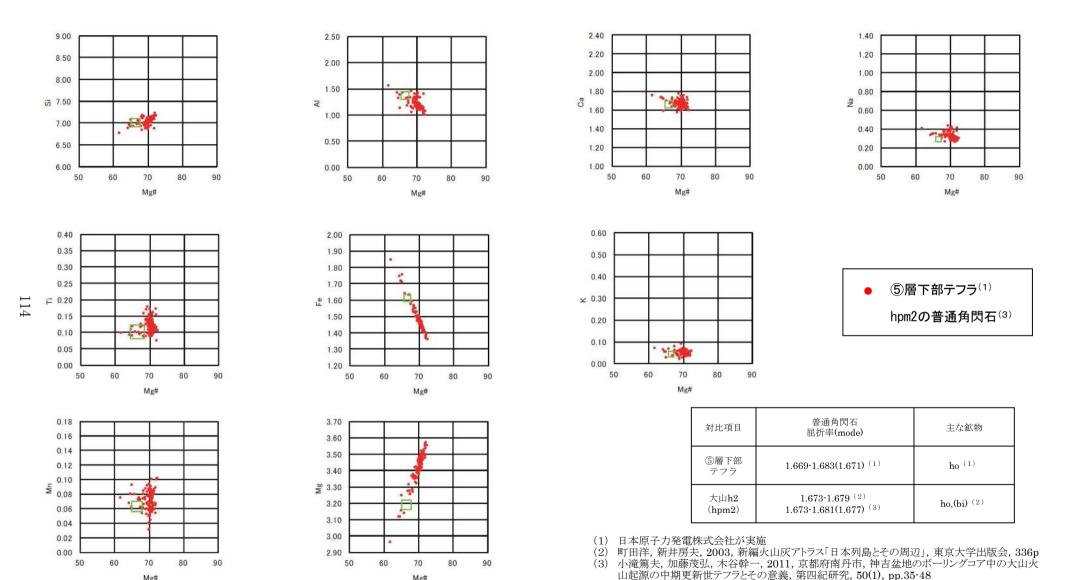
ジルス 1, 水水八子山瓜五, 000p


D-1トレンチ テフラ分析(⑤層下部テフラとDMPの普通角閃石の主成分分析)

112

- (1) 日本原子力発電株式会社が実施
- (2) 町田洋, 新井房夫, 2003, 新編火山灰アトラス「日本列島とその周辺」, 東京大学出版会, 336p

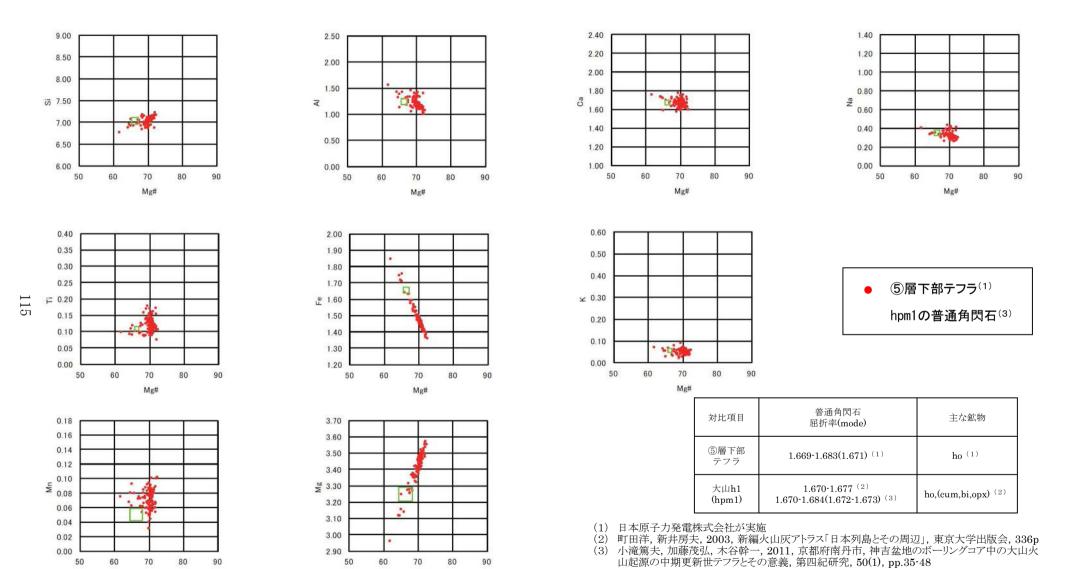
D-1トレンチ テフラ分析(⑤層下部テフラとDBPの普通角閃石の主成分分析等)


⑤層下部テフラとDBPの普通角閃石の主成分を分析した結果, DBPの普通角閃石は、⑤層下部テフラの普通角閃石と異なることを確認した。

Mg#

Mg#

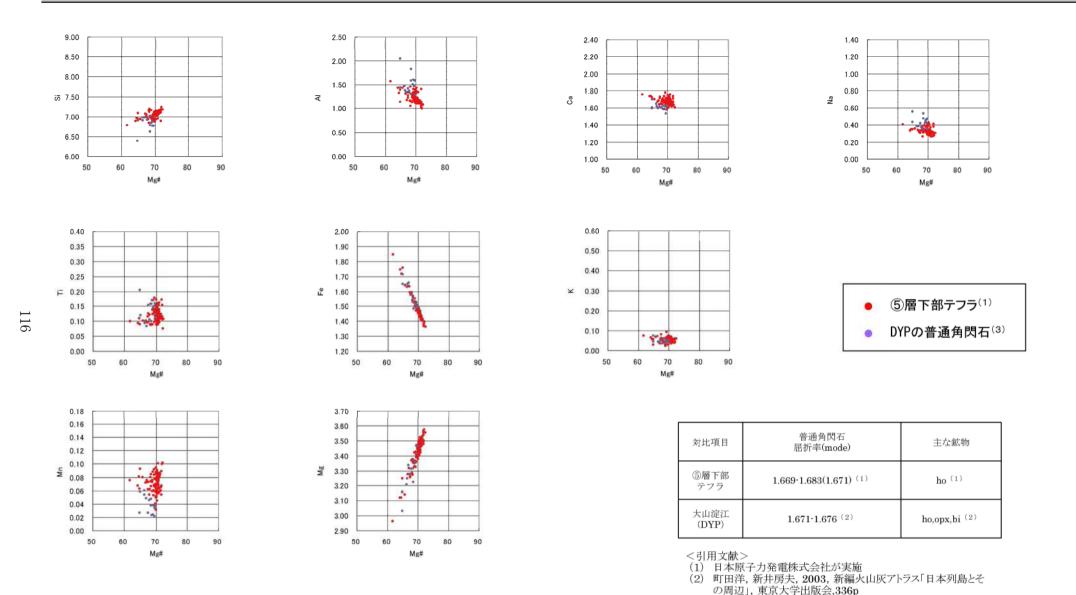
中の大山火山起源の中期更新世テフラとその意義, 第四紀研究, 50(1), pp.35-48


D-1トレンチ テフラ分析(⑤層下部テフラとhpm2の普通角閃石の主成分分析等)

⑤層下部テフラとhpm2の普通角閃石の主成分を分析した結果、hpm2の普通角閃石は、⑤層下部テフラの普通角閃石と異なることを確認した。

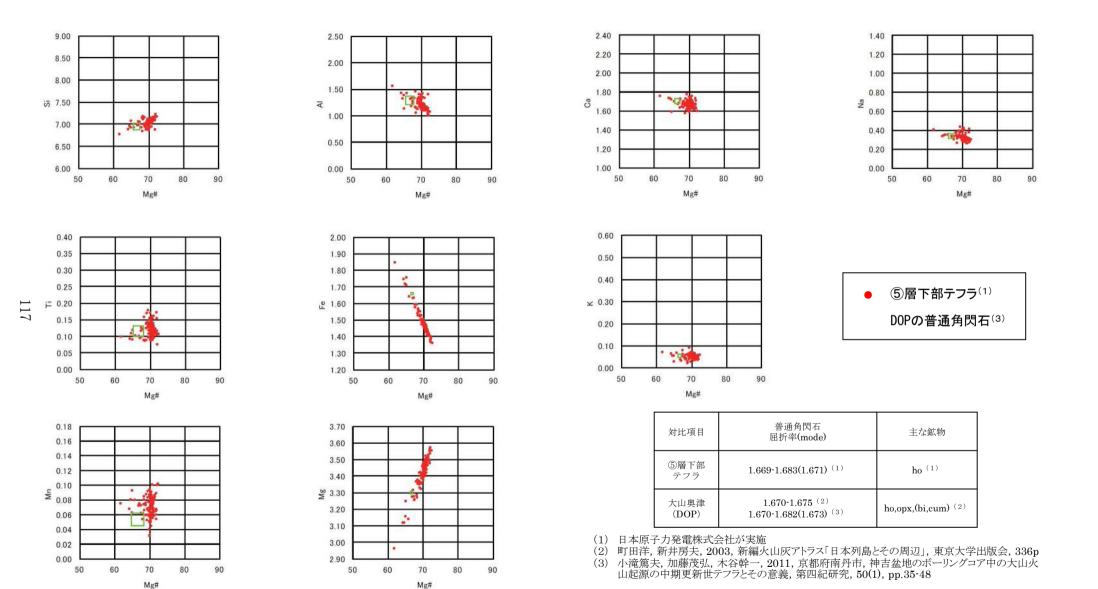
Mg#

D-1トレンチ テフラ分析 (⑤層下部テフラとhpm1の普通角閃石の主成分分析等)



⑤層下部テフラとhpm1の普通角閃石の主成分を分析した結果, hpm1の普通角閃石は, ⑤層下部テフラの普通角閃石と異なることを確認した。

Mg#


Mg#

D-1トレンチ テフラ分析(⑤層下部テフラとDYPの普通角閃石の主成分分析)

⑤層下部テフラとDYPの普通角閃石の主成分を分析した結果、DYP2の普通角閃石は、⑤層下部テフラの普通角閃石と異なることを確認した。

D-1トレンチ テフラ分析(⑤層下部テフラとDOPの普通角閃石の主成分分析等)

⑤層下部テフラとDOPの普通角閃石の主成分を分析した結果, DOPの普通角閃石は, ⑤層下部テフラの普通角閃石と異なることを確認した。

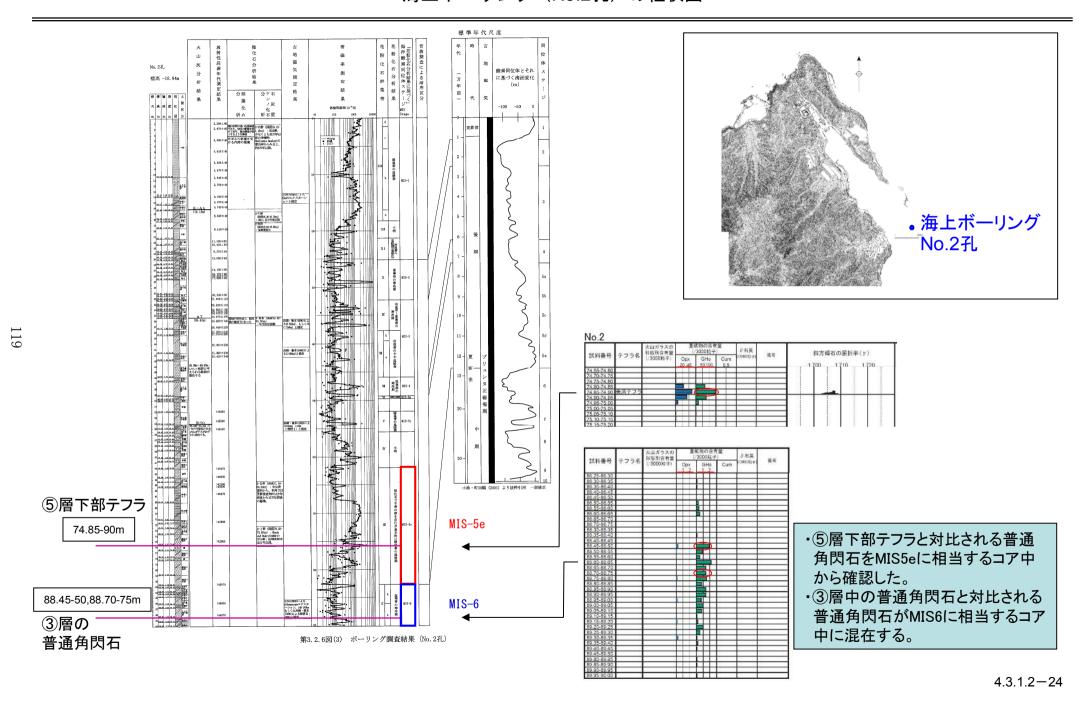
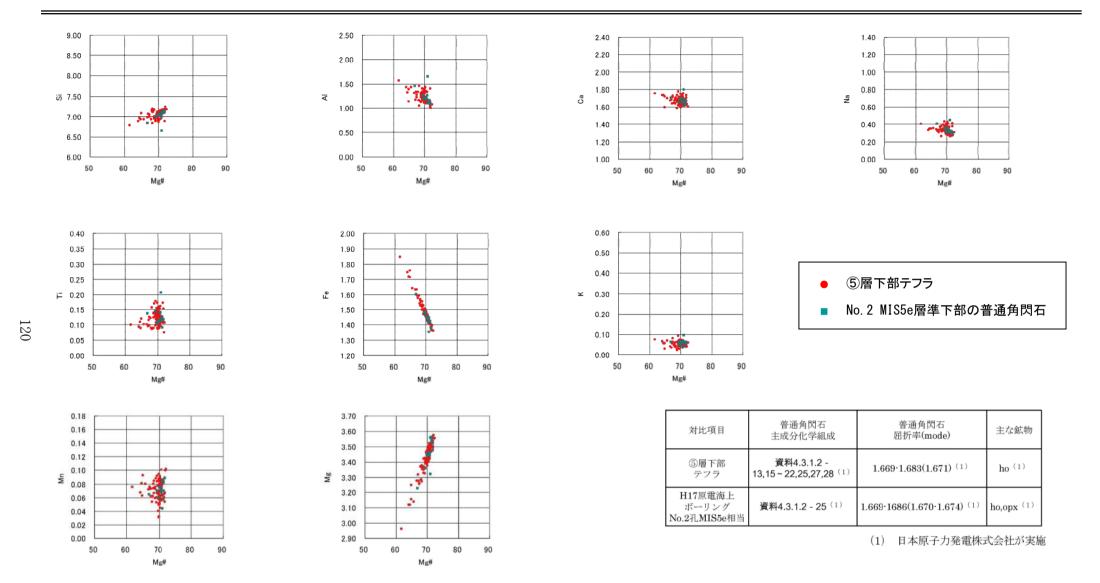
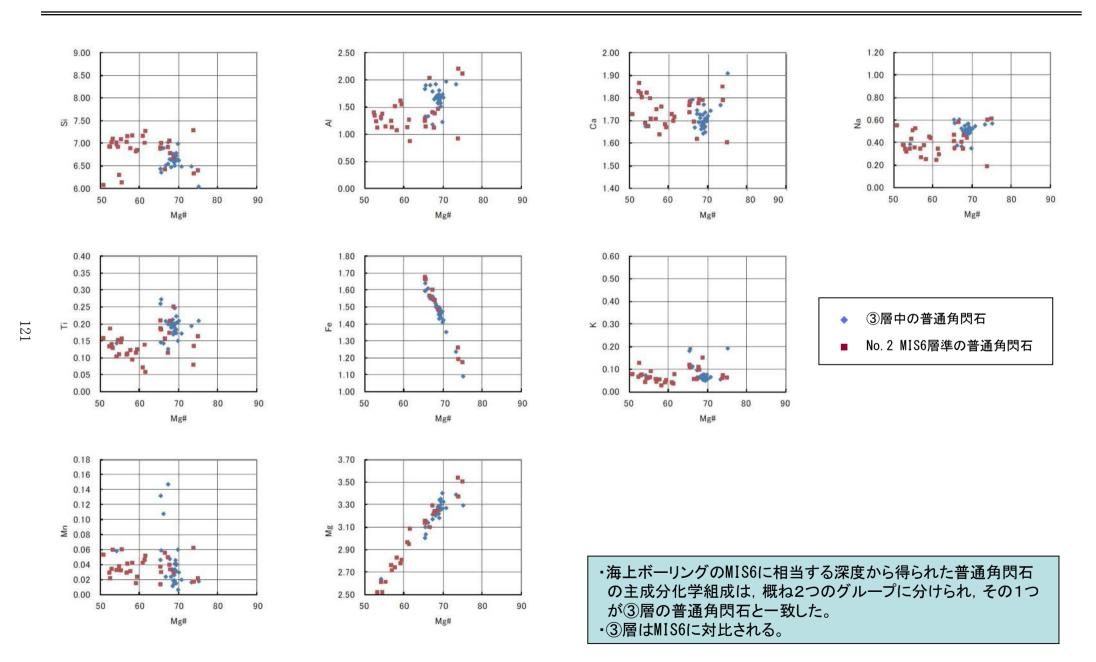

表 2 年代指標テフラにもとづき算出した高島沖コアの堆積速度とテフラ年代

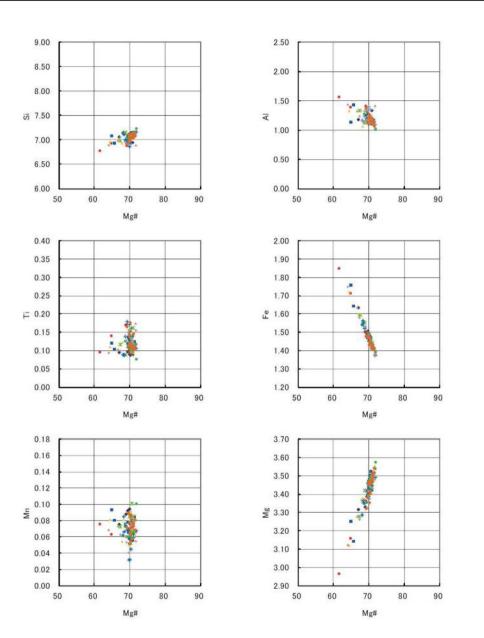
Table 2 Tephra ages and sedimentary rate estimated from the age of the principal maker tephra layers

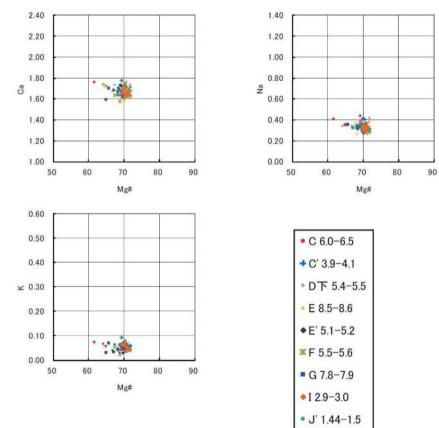

Tephra name	tephra correlation	Depth	Age	sed. rate	Thickness	Maximam grain	Tephra name	tephra correlation	Depth	Age	sed. rate	Thickness	Maximam grain
		(m)	(Ka)	(m/1000y)	(cm)	size (mm)			(m)	(Ka)	(m/1000y)	(cm)	size (mm)
BT1	Kg	1.52	3.1	0.490		0.28	BT45		68.29	209.5	0.805	0.7	0.65
BT2	9	1.72	4.3	0.163		0.25	BT46		68.72	210.1	1	• • • • • • • • • • • • • • • • • • • •	0.23
BT3	K-Ah	2.23	7.3		2.5	0.66	BT47		70.26	212.0	À	0.8	1.87
				0.116			BT48		70.37	212.1	Ť	3.0	1.97
BT4	U-Oki	2.65	10.7		2.5	0.27	BT49		70.65	212.4	Ť	1.5	1.77
BT5		3.18	12.3	0.318	3.0	0.20	BT50		73.37	215.8	Ť		0.70
BT6	Sakate	4.76	17.2	↑		0.33	BT51	Kh-l	73.58	216.0		2.0	1.55
BT7		7.90	27.1	↑	1.0	0.87	BT52		76.97	221.8	0.582		0.28
BT8		8.35	28.5	↑	0.3	0.92	BT53		79.17	225.6	↑		0.40
BT9	Kitoragawa	8.37	28.5	↑	1.0	1.18	BT54		83.57	233.2	↑		0.33
BT10	ΑŤ	8.62	29.0		10.0	0.95	BT55		84.72	235.1	↑		0.38
BT11		8.72	29.3	0.301	2.5	0.84	BT56		84.87	235.4	↑		0.28
BT12		8.84	29.7	↑	2.0	0.73	BT57		85.56	236.6	↑	0.5	0.24
							BT58	Ata-Th	86.49	238.0		11.0	1.60
BT14		14.59	48.7	↑		0.40	BT59		92.57	247.0	0.673	5.0	0.28
BT15	SI	14.69	49.0			0.43	BT60		93.18	247.8	<u> </u>	1.5	0.48
BT16		26.70	79.6	0.387	2+	1.83	BT61	Aso-1	94.37	249.0		41.0	0.59
BT17		27.15	80.7	↑	8.5	1.80	BT62		94.45	249.4	0.162	1.5	0.95
BT18		27.20	80.9	1	2.0	2.55	BT63		94.82	251.7	↑ .		0.35
BT19		28.24	83.5	↑	5.0	1.90	BT64		95.17	253.8	↑		0.22
BT20		28.34	83.8	<u>↑</u>	1.5	2.53	BT65		99.18	278.6	1		0.35
BT21		29.44	86.6	1	1.0	1.38	BT66	Ng-1	101.68	294.0		0.5+	0.10
BT22	Aso-4	29.61	87.0		2+	2.30	BT67		102.54	296.6	0.323	2.0	0.40
BT23		29.72	87.3	0.313	1.0	2.26	BT68		105.08	304.5	1		0.80
BT24		29.92	88.0	1		1.10	BT69		108.33	314.5	↑		0.33
BT25	K-Tz	30.88	91.0		1.0	0.78	BT70	Kkt	114.63	334.0			0.40
BT26		30.94	91.2	0.246	0.5	0.52	BT71		119.93	347.2	0.401		0.50
BT27		32.27	96.6	^	2.0	0.48	BT72		120.72	349.0		7.5	1.14
BT28		32.76	98.6	↑	1.5	2.06	BT73		121.94		0.392		0.20
BT29		32.89	99.1	↑	2.0	0.60	BT74		122.17	352.6	↑	5.0	1.06
BT30		33.00	99.5			0.30	LCH 12		124.30	358.0			
BT31		34.35	104.9	1		0.45	BT75		132.78	379.6	↑		0.30
BT32		34.45	105.3	^		0.40	BT76		135.46	386.4	^	3.0	0.69
BT33		34.90	107.1	↑		0.60	silt base		137.28	391.0			
BT34		38.60	122.0		3.0	0.60	Ma9 top		208.45	400.0			
BT35		39.07	123.0	0.480		0.38	. P10		211.95	401.3			
BT36		39.45	123.7	<u>↑</u>	4.5	1.18	P11		215.75	402.6	1	3.0	
BT37		41.34	127.6	1	1.0	0.83	P12		221.40	404.7	Ţ		
BT38		42.82	130.7	↑		0.33	P13		241.40	411.9	↑		
BT39		43.49	132.1	↑		0.50	P14		247.40	414.1	↑		
BT40		43.78	132.7		0.5	0.32	Mj-II		248.15	414.3	↑	10.5	
BT41		43.94	133.0		0.5	0.50	Ma9 base		250.10	415.0			
Koyo-I	Aso-3		133.0		5+		Mj-l	Ks5	253.00	430.0		20.0	
BT42		46.81	143.6	0.272		1.00							
BT43	Aso-2	47.41	145.8	↑		0.60							
BT44		63.03	203.0		2.5	1.86							

長橋良隆,吉川周作,宮川ちひろ,内山高,井内美郎,2004,近畿地方および八ヶ岳山麓における過去の43万年間の広域テフラの層序と編年-EDS分析による火山ガラス片の主要成分化学組成-,第四紀研究,43(1),pp.15-35

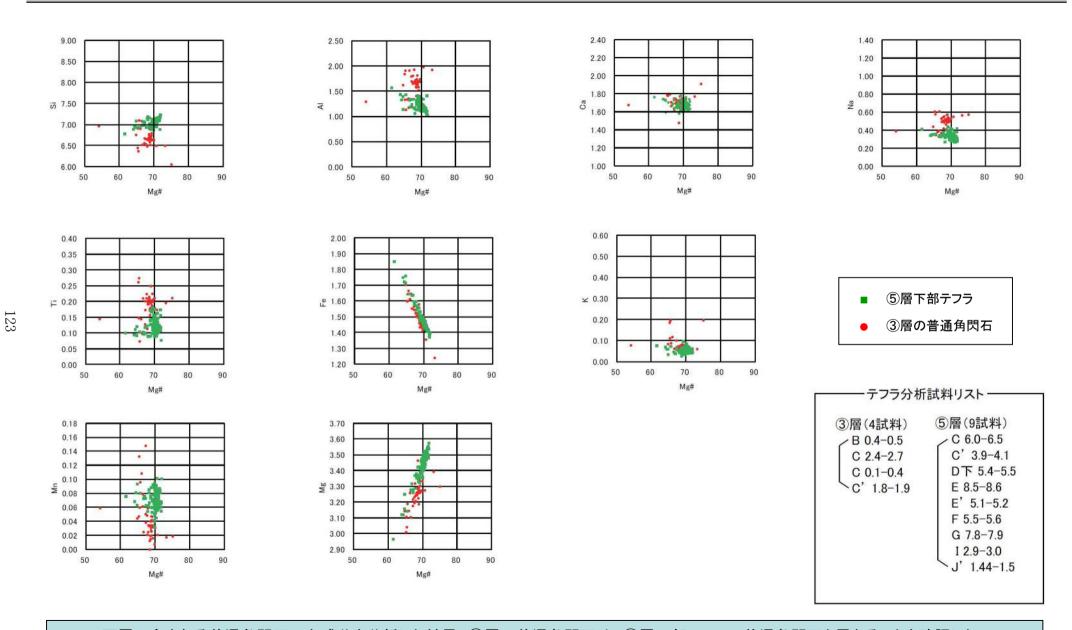
BT37については、長橋他(2004)によれば、琵琶湖高島沖コアの堆積速度とテフラ年代から、降灰年代が127.6kaである。




D-1トレンチ テフラ分析(⑤層下部テフラと海上ボーリングMIS5eの普通角閃石の主成分分析)



敦賀湾で実施した海上ボーリングでは、⑤層下部テフラと同じ主成分及び屈 折率を有する普通角閃石がMIS5eに相当するコア中の下部からも検出された。

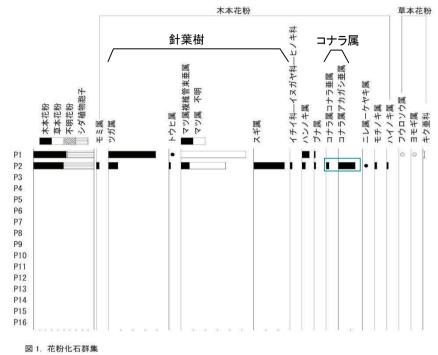

D-1トレンチ テフラ分析 (③層下部と海上ボーリングMIS6の普通角閃石の主成分分析)

主成分分析の結果、⑤層下部テフラはいずれの測線でも、同じ範囲に値が集中していることを確認した。

両層に含まれる普通角閃石の主成分を分析した結果、③層の普通角閃石は、⑤層下部テフラの普通角閃石と異なることを確認した。

4.3.1.3 花粉分析

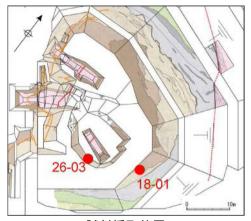
D-1トレンチでは、②層~⑤層、⑧層、⑨層及び新期扇状地堆積物を対象として、花粉分析を実施した。


その結果, ⑤層最上部, ⑤層最下部, ②層から花粉が検出された。

- ⑤層最上部は、全体に風化の影響を強く受けており、花粉化石の保存状態は悪い。検出 される花粉が針葉樹とシダ類胞子にほぼ限られるため、古気候は推定できない。
- ⑤層最下部は、全体に風化の影響を強く受けており、花粉化石の保存状態は悪いが、針葉樹のマツ属、スギ属が優勢し、他に広葉樹のコナラ属を含む組成により比較的温暖な気候を示す。【資料 4.3.1.3-1】
- ②層は、針葉樹のスギ属、マツ属が多く、次いでツガ属、モミ属等が検出される。他に広葉樹のコナラ属を含む。スギ属をはじめとする温帯針葉樹が多産することから比較的温暖であったと考えられる。【資料 4.3.1.3-2】

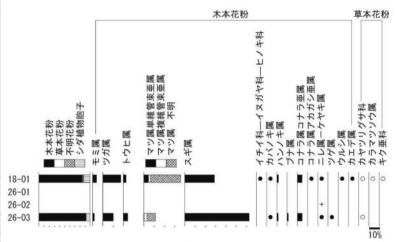
以上の層相, テフラ分析, 花粉分析等から, ①層~③層は MIS6 以前に, ⑤層下部は MIS5e に, ⑤層上部は MIS5c に, ⑥層は MIS5a~b に, ⑦層~⑨層は MIS4 以降にそれぞれ相当する。

試料採取位置


出現率は、木本花粉は木本花粉化石総数、草本花粉などは総数より不明花粉を除く数を基数として百分率で算出した。なお、●○は1%未満を示す。

P1: ⑤層最上部

- ・全体に風化の影響を強く受けており、花粉化石の保存状態は悪い。
- ・検出した花粉は針葉樹とシダ類胞子にほぼ限られるため、古気候は推定できない。


P2: ⑤層最下部

・全体に風化の影響を受けている。針葉樹のマツ属、スギ属が優勢し、他に広葉樹のコナラ属を含む組成は比較的温暖な気候を示す。

試料採取位置

		D1	D1	D1	D1
		Po	Po	Po	Po
		18-01	26-01	26-02	26-0
木本花粉	Arboreal Pollen				
モミ属	Abies	10	-	-	
ツガ属	Tsuga	46	-	-	2
トウヒ属	Picea	7	-	-	1
マツ属単維管束亜属	Haploxylon	12	-	-	
マツ属複維管束亜属	Diploxylon	5	-	-	
マツ属 不明	Pinus	77	_	-	2
スギ属	Cryptomeria	76	-	-	14
イチイ科―イヌガヤ科―ヒノキ科	TC.	1	-	-	
カバノキ属	Betula	1	-	-	
ハンノキ属	Alnus	4	-	-	
ブナ属	Fagus	_	-	-	
コナラ属コナラ亜属	Quercus subgen. Lepidobalanus	12	-	-	1
コナラ属アカガシ亜属	Quercus subgen. Cyclobalanopsis	1	-	-	
ニレ属ーケヤキ属	Ulmus-Zelkova	1	-	1	
ツゲ属	Buxus	-	-	-	
ウルシ属	Rhus	1	-	-	
カエデ属	Acer	1	-	-	
草本花粉	Nonarboreal Pollen				
カヤツリグサ科	Cyperaceae	3	-	-	
カラマツソウ属	Thalictrum	1	-	-	
キク亜科	Carduoideae	1	-	-	
不明花粉	Unknown Pollen				
不明花粉	Unknown pollen	1			
ンダ植物胞子	Pteridophyta Spores				
他のシダ植物胞子	other Pteridophyta spores	38	_	-	2
計	TOTAL				
木本花粉	Arboreal Pollen	255	0	1	23
草本花粉	Nonarboreal Pollen	5	0	0	
不明花粉	Unknown Pollen	1	0	0	
シダ植物胞子	Pteridophyta Spores	38	0	0	2
総花粉·胞子	Total Number of Pollen & Spores	299	0	1	25
分析後残渣の観察	·				
有機物残渣量; VA:Very Abun Common(普通), F:Few(少ない)	dant (非常に多い),A: Abundant(多い),C: ,Tr: Trace(痕跡程度(微量))	VA	Tr	Tr	\
有機物形態; am:amorphous主	体、mix:混在、wo:woody•coaly•herbaceous主体	wo	wo	wo	,
C:Common(普通), R:Rare(稀木	A: Very Abundant (非常に多い), A: Abundant (多い), ı), VR: Very Rare (極く稀れ), N: Non(無化石)	А	VR	VR	
	G: Very Good(非常に良い), G: Good(良い), M: VP: Very Poor(非常に悪い)	м	м	м	

木本花粉は木本花粉総数、草本花粉・シダ類胞子は総数から不明花粉を除いた数を基数として 百分率で表した。○●は 1% 未満、+は木本花粉100個未満の試料において検出された種類を示す。

図 1. 花粉化石群集

18-01, 26-03:②層

・スギ属, マツ属が多く, 次いでツガ属, モミ属等が検出される。他に広葉樹のコナラ属を含む。スギ属をはじめとする温帯針葉樹が多産することから比較的温暖であったと考えられる。