東海低レベル放射性廃棄物埋設事業所

第二種廃棄物埋設事業許可申請

主要な放射性核種の選定について

平成 30 年 2 月 日本原子力発電株式会社

本資料のうち, は商業機密又は核物質防護上の観点から公開できません。

目 次

1	. はじめに…		••••	1
2	2.主要な放射	性核種の選定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••	1
3	3. L 3 対象物	に含まれていると推定される放射性核種の抽出 (15)	0核種)
			••••	2
4	↓. L3対象物(の放射能濃度の推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••	2
	4.1 L 3 対	す象物の性状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••	3
	4.2 L 3 対	す象物の数量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••	3
	4.3 L 3 文	す象物の放射能量の評価⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	••••	3
	4.4 L 3 対	付象物の放射能濃度の推定⋯⋯⋯⋯⋯⋯⋯⋯		5
5	5.被ばく線量	への影響度を用いた核種選定の対象となる放射性	核種の)
5	5. 被ばく線量 抽出(37 核	への影響度を用いた核種選定の対象となる放射性 種)・・・・・・	核種 <i>0</i> .) 5
5 6	5. 被ばく線量 抽出(37 核 5. 被ばく線量・	への影響度を用いた核種選定の対象となる放射性 種)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	核種 <i>0</i> .	5 5
5	5. 被ばく線量 抽出(37 核 5. 被ばく線量 6. 1 代表的	への影響度を用いた核種選定の対象となる放射性 種) への寄与の大きい主要な放射性核種の選定・・・・・・・ りな線量評価シナリオの選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	核種 <i>0</i> . 	5 5 5
5	5. 被ばく線量 抽出(37 核 5. 被ばく線量・ 6. 1 代表的 6. 2 被ばく	への影響度を用いた核種選定の対象となる放射性 種)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	核種 <i>0</i>	5 5 5 6
5	5. 被ばく線量 抽出(37 核 5. 被ばく線量 6. 1 代表的 6. 2 被ばく	への影響度を用いた核種選定の対象となる放射性 種) への寄与の大きい主要な放射性核種の選定 的な線量評価シナリオの選定 モデル 、モデル 、 転号16,17については,次回以降,第9条にて説明を行	核種 <i>0</i>	5 5 5 6
5	5. 被ばく線量 抽出(37 核 5. 被ばく線量 6. 1 代表的 6. 2 被ばく 「指摘事項管理型 6. 3 評価ハ	¹ への影響度を用いた核種選定の対象となる放射性 ¹ 種) への寄与の大きい主要な放射性核種の選定 いた な線量評価シナリオの選定 モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	核種の <u>テいます</u>) 5 5 6 7 6
5	5. 被ばく線量 抽出(37 核 5. 被ばく線量 6. 1 代表的 6. 2 被ばく 「指摘事項管理型 6. 3 評価ハ 6. 4 線量評	こ、本の影響度を用いた核種選定の対象となる放射性 に、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	核種の <u></u> 	ン 5 5 5 6 日 6 0

<u>1.はじめに</u>

「核燃料物質又は核燃料物質によって汚染された物の第二種廃棄物埋設の事 業に関する規則」第2条第1項第1号では,申請書に記載する事項の一つとし て,「第二種廃棄物埋設を行う放射性廃棄物の種類及び数量並びに当該放射性 廃棄物に含まれる放射性物質の種類ごとの最大放射能濃度及び総放射能量を 記載すること。」と規定されており,合理的な廃棄物確認等の観点から,埋設 対象となっている廃棄物に含まれる放射性核種のうち,被ばく線量の寄与の大 さい放射性核種を主要な放射性核種として選定し,その放射能量と最大放射能 濃度を記載する必要がある。

本資料は,主要な放射性核種の選定方法及びその放射性核種の種類を示す。

2.主要な放射性核種の選定方法

主要な放射性核種は,埋設対象となっている廃棄物中<u>(以下「L3対象物」</u> <u>という。)</u>に含まれる放射性核種のうち,被ばく線量への寄与の大きい放射性 核種を選定する。

上記の基本的な考え方に基づき,被ばく線量への寄与の大きい放射性核種を 主要な放射性核種として次の手順により選定する。選定フローを第1図に示す。

(1)L3対象物に含まれていると推定される放射性核種の抽出(150核種)

- (2) L3対象物の放射能濃度の推定
- (3) 被ばく線量への影響度を用いた核種選定の対象となる放射性核種の 抽出(37 核種)

(4) 被ばく線量への寄与の大きい主要な放射性核種の選定

「指摘事項管理表」番号11

<u>3</u>. L 3 対象物に含まれていると推定される放射性核種の抽出(<u>150</u>核種)

L3対象物に含まれていると推定される放射性核種の抽出を行う際には,そ の出発点として原子炉内で生成する半減期 30 日以上の放射性核種を ORIGEN2 附属ライブラリ(DECAY.LIB)より抽出する。ORIGEN2 コードは,核燃料サイク ルの施設設計・評価,廃止措置の計画にも広く利用されているコードであり, 使用済燃料及びその再処理により生成される放射性廃棄物の評価に関して十 分な精度をもつため ,ORIGEN2 コードの附属ライブラリにより半減期 30 日以上 の核種を<u>抽出するとともに ,「JAEA-Data/Code 2012-014 Table of Nuclear</u> Data (JENDL/TND-2012)」の半減期についても確認し,半減期 30 日以上の核 種を抽出する。ORIGEN2 コードの附属ライブラリにより半減期 30 日以上の核種 は <u>177</u>核種となった。また,<u>ORIGEN2 コードの附属ライブラリによる半減期で</u> は抽出されなかったものの、「JAEA-Data/Code 2012-014 Table of Nuclear Data (JENDL/TND-2012)」の半減期 30 日以上で抽出された核種が 17 核種であった。 よって,抽出された核種は194核種となった。抽出結果を第1表に示す。この 194 核種の中には,生成するとしてもその量が少ないもの等が含まれており, 生成の可能性等の確認を行うことで,考慮する必要のない核種として 44 核種 を除外する。44 核種の確認結果を第2表に示す。

以上により,L3対象物に含まれていると推定される放射性核種を<u>150</u>核種 とした。

<u>4</u>. L 3 対象物の放射能濃度の推定

東海発電所の廃止措置により発生する廃棄物は、「東海発電所廃止措置計画 認可申請書」(平成25年3月8日認可,以下「廃止措置計画書」という。)に おいて,残存放射性物質の放射能量及び物量を評価している。

この残存放射性物質の放射能量を原子炉停止から埋設までの期間を考慮し

た時点である原子炉停止 20 年後に減衰補正し, L 3 対象物の放射能量及び物 量を核種ごとに評価する。

4.1 L3対象物の性状

L3対象物の性状は,東海発電所の廃止措置により発生する固体状の廃 棄物であって,中性子線の作用により放射化された又は原子炉冷却材等で 汚染された金属及びコンクリートである。

- 4.2 L3対象物の数量
 - (1)金属

金属は,機器や配管等の解体撤去等に伴って発生する約 6,100t の 廃棄物であり,鉄箱に封入して埋設する。

(2) コンクリートブロック

コンクリートブロックは,建屋の解体に伴って発生する約 9,400t のコンクリート廃棄物であり,その形状に応じた適切な大きさに分割 し,プラスチックシートに梱包して埋設する。

(3)コンクリートガラ

コンクリートガラは,コンクリートのはつり等に伴い発生する約 500t のコンクリートの破片等であり,フレキシブルコンテナに封入し て埋設する。

以上, L3対象物の数量は最大16,000tである。

4.3 L3対象物の放射能量の評価

L3対象物の放射能量<u>の評価フローを第2図に示す</u>。基本的には「廃止 措置計画書」を基に設定した核種組成比を使用し,L3対象物の放射能量 を計算しているが,将来の<u>廃棄物確認</u>の際にスケーリングファクタ法ある いは平均放射能濃度法を適用されることが想定される核種については,現 時点における最新値を用いて評価する。なお,スケーリングファクタ法及 び平均放射能濃度法は,原子炉冷却材等で汚染された金属及びコンクリートについて適用する。評価結果を第3表に示す。また,評価方法について は以下に示す。

(1)核種組成比

スケーリングファクタ法及び平均放射能濃度法を適用しない核種 の放射能量は以下の式に基づいて計算する。<u>放射能量は核種ごとに合</u> <u>計する。原子炉停止 20 年後に減衰補正した</u>放射化及び汚染の核種組 成比をそれぞれ第4表,第5表に示す。

廃棄物の性状ごとL3対象物ごとの放射能濃度(Bq / t)

×核種組成比(-)×L3 対象物ごとの物量(t)

(2)スケーリングファクタ法

スケーリングファクタ法を適用する核種は,C-14,Cl-36, Ni-63及びSr-90である。放射能量は以下の式に基づいて計算 する。<u>原子炉停止 20 年後に減衰補正した</u>スケーリングファクタを第 6表に示す。

key 核種の廃棄物の性状ごとL3 対象物ごとの放射能濃度(Bq / t)

<u>×スケーリングファクタ(-)×L3対象物ごとの物量(t)</u> スケーリングファクタ法を適用した核種のうち, Co-60 を key 核種としたのは, C-14, Cl-36及びNi-63であり, Cs-137 を key 核種としたのはSr-90である。

(3) 平均放射能濃度法

平均放射能濃度法を適用した核種は,H-3である。放射能量は以 下の式に基づいて計算する。設定した平均放射能濃度を第7表に示す。

廃棄物の性状ごとのH-3平均放射能濃度(Bq/t)

×L3 対象物ごとの物量(t)

4.4 L3対象物の放射能濃度の推定

<u>4</u>.3にて計算された核種ごとの放射能量を最大廃棄重量の 16,000t で 除して核種ごとの放射能濃度を算出した。(第3表参照)

<u>5</u>. 被ばく線量への影響度を用いた核種選定の対象となる放射性核種の抽出 (37 核種)

3.にて選定された 150 核種について,4.4 で算出したL3対象物に含ま れる核種ごとの放射能濃度が、「製錬事業者等における工場等において用いた 資材その他の物に含まれる放射性物質の放射能濃度についての確認等に関す る規則」に定められた放射線による障害の防止のための措置を必要としない放 射能濃度基準(以下「CL濃度基準」という。)又は「IAEA SAFETY GUIDE Application of the Concepts of Exclusion, Exemption and Clearance」に 記載されたCL濃度基準と比較して十分小さい核種は、被ばく線量への寄与が 小さいため除外できるとし、放射能濃度がCL濃度基準の1万分の1以上とな る核種をここでは抽出する。(第3表参照)

なお,除外した核種が,判定値に近い値(放射能濃度がCL濃度基準の1万 分の1)で100個存在した場合であってもCL濃度基準の1%程度であること から,判定値を「放射能濃度がCL濃度基準の1万分の1以上」とした。

この結果,主要な放射性核種を選定するための被ばく線量評価の対象となる 放射性核種として 37 核種を選定する。選定された 37 核種を第 8 表に示す。

6.被ばく線量への寄与の大きい主要な放射性核種の選定

6.1 代表的な線量評価シナリオの選定

<u>4</u>.3にて算出したL3対象物の<u>核種ごとの</u>放射能量を使用して,<u>5</u>. にて選定された 37 核種の線量評価を行い,線量評価シナリオごとに相対 重要度を算出し,主要な放射性核種を選定した。相対重要度は,線量評価 シナリオごとに「重要核種」と対象核種との線量比とする。

主要な放射性核種を選定するための線量評価シナリオについては,廃棄 物埋設地及びその周辺で想定される線量評価シナリオを選定<u>することと</u> し,「東海低レベル放射性廃棄物の埋設事業所 第二種廃棄物埋設事業許 可申請書」(以下「事業許可申請書」という。)の添付書類六にて選定され たシナリオを選定する。ただし,類似した他のシナリオと相対重要度が変 わらないシナリオについては,その類似した他のシナリオで代表できるも のとした。選定された線量評価シナリオを第9表に示す。

<u>6.2 被ばくモデル</u>

第9条で説明する。

<u>6.3</u>評価パラメータ 「指摘事項管理表」番号16

主要な放射性核種の選定のための線量評価で使用するパラメータにつ いては,核種に依存しない共通的なパラメータは,基本的には事業許可申 請書の添付書類六で評価する線量評価と同じパラメータを使用する。また, 核種ごとに設定するパラメータは,基本的には事業許可申請書の添付書類 六で評価する線量評価と同等の考え方で37核種のパラメータを設定する。 ただし,収着分配係数については,事業許可申請書の添付書類六の線量評 価では試験結果を保守的にした値を設定しており,主要な放射性核種の選 定のために行う他の核種との相対評価には適していないと考え,全ての核 種について,文献値等から設定する。

線量評価シナリオごとのパラメータを以下に示す。

<u>6</u>.<u>3</u>.1 海産物摂取シナリオ

基本シナリオ及び変動シナリオを選定する。自然現象シナリオは,基本 シナリオより核種ごとに設定するパラメータ(以下「核種に依存するパラ メータ」という。)に変更がなく,相対重要度が同一になるため,基本シ ナリオで代表できるものとする。

なお,変動シナリオは基本シナリオより核種に依存するパラメータであ る収着分配係数を変更しているため選定する。

(1)基本シナリオ

<u>第10表及び第11表に基本シナリオの評価パラメータを示す。</u> (2)変動シナリオ

<u>第10表及び第12表に変動シナリオの評価パラメータを示す。</u>

(<u>3</u>)自然現象シナリオ(液状化による廃棄物浸漬)

海産物摂取(液状化浸漬)シナリオでは,基本シナリオと同じ評価モデ ルを使用し,基本シナリオからパラメータの一部を変更して評価する。変 更するパラメータは,浸透水量のみであり,これは核種に依存しない共通 的なパラメータである。よって,核種に依存するパラメータは基本シナリ オと同一であるため,本シナリオは基本シナリオで代表できる。

(4)自然現象シナリオ(津波による廃棄物浸漬)

海産物摂取(津波浸漬)シナリオでは,基本シナリオと同じ評価モデル を使用し,基本シナリオからパラメータの一部を変更して評価する。変更 するパラメータは,浸透水量と帯水層の厚さであり,これは核種に依存し ない共通的なパラメータである。核種に依存するパラメータは基本シナリ オと同一であるため,本シナリオは基本シナリオで代表できる。

<u>6.3</u>.2 海岸活動シナリオ

基本シナリオ及び変動シナリオを選定する。自然現象シナリオは,基本 シナリオより核種に依存するパラメータに変更がなく,相対重要度が同一 になるため,基本シナリオで代表できるものとする。個々の自然現象シナ リオの評価については,<u>6</u>.<u>3</u>.1(<u>3</u>)及び(<u>4</u>)と変更するパラメー タも含め同様である。

(1)基本シナリオ

<u>第13表及び第14表に基本シナリオの評価パラメータを示す。</u> (2)変動シナリオ

<u>第13表及び第15表に変動シナリオの評価パラメータを示す。</u>

<u>6</u>.<u>3</u>.3 井戸水飲用摂取シナリオ

人為事象シナリオである井戸水飲用摂取シナリオを選定する。<u>第16表</u> 及び第17表に評価パラメータを示す。

6.3.4 跡地利用建設シナリオ

基本シナリオを選定する。<u>第18表及び第19表に評価パラメータを示</u> <u>す。</u>変動シナリオ及び自然現象シナリオは,基本シナリオより核種に依存 するパラメータに変更がなく,相対重要度が同一になるため,基本シナリ オで代表できるものとする。変動シナリオ及び自然現象シナリオの評価に ついては,<u>6</u>.<u>3</u>.1(<u>3</u>)と同様であり,変更するパラメータは,周辺 土壌との希釈係数のみで,これは核種に依存しない共通的なパラメータで ある。

<u>6</u>.<u>3</u>.5 跡地利用居住シナリオ

基本シナリオを選定する。<u>第20表及び第21表に評価パラメータを示</u> <u>す。</u>変動シナリオ及び自然現象シナリオは,基本シナリオより核種に依存 するパラメータに変更がなく,相対重要度が同一になるため,基本シナリ オで代表できるものとする。変動シナリオ及び自然現象シナリオの評価に ついては,6.3.4と同様である。

<u>6</u>.<u>3</u>.6 跡地利用家庭菜園シナリオ

基本シナリオを選定する。<u>第22表及び第23表に評価パラメータを示</u> <u>す。</u>変動シナリオ及び自然現象シナリオは,基本シナリオより核種に依存 するパラメータに変更がなく,相対重要度が同一になるため,基本シナリ オで代表できるものとする。変動シナリオ及び自然現象シナリオの評価に ついては,<u>6</u>.<u>3</u>.4と同様である。

<u>6.3.7</u> 農産物摂取シナリオ

農産物摂取シナリオでは,跡地利用家庭菜園の基本シナリオの評価モデ ルの中で,掘削混合土のモデルを設定していないモデルを使用し,跡地利 用家庭菜園の基本シナリオからパラメータの一部を変更して評価する。変 更するパラメータは,根からの吸収割合と市場係数であり,これは核種に 依存しない共通的なパラメータである。核種に依存するパラメータは跡地 利用家庭菜園の基本シナリオと同一であるため,本シナリオは跡地利用家 庭菜園の基本シナリオで代表できる。

6.3.8 畜産物摂取シナリオ

人為事象シナリオである畜産物摂取シナリオを選定する。<u>第24表及び</u> 第25表に評価パラメータを示す。

- <u>6</u>.<u>3</u>.9 跡地利用公園シナリオ(基本シナリオ,自然現象シナリオ) 跡地利用公園シナリオでは,跡地利用居住の基本シナリオと被ばくに寄 与する核種の組成が同じであるため,本シナリオは跡地利用居住の基本シ ナリオで代表できる。
- 6.3.10 廃棄物露呈シナリオ

廃棄物露呈シナリオは,跡地利用居住の基本シナリオと被ばくに寄与す る核種の組成が同じであるため,本シナリオは跡地利用居住の基本シナリ オで代表できる。

本シナリオの評価時期は 300 年以降であり,跡地利用居住の基本シナリ オの評価時期である 50 年以内と大きく違う。そのため,被ばく線量に寄 与する核種の放射能量の減衰により,必然的に長半減期核種の相対重要度 が高くなるが,評価時期 300 年以降の被ばく線量は評価時期 50 年以内よ りも低くなる。よって,主要な放射性核種を選定するための線量評価シナ リオから本シナリオは対象外とする。

6.4 線量評価結果の相対的評価

線量評価シナリオごとに重要核種と対象核種との線量比が1%以上であ る核種を被ばく線量への寄与の大きい核種として選定する。線量評価シナ リオごとの線量評価結果及び相対重要度評価結果をそれぞれ<u>第26表</u>及 び第27表に示す。

6.4.1 海産物摂取シナリオ

本シナリオにおける被ばく線量評価の結果,重要核種はC-14と なった。2番目以降の核種の相対重要度は1%未満となり,本シナ リオでは1核種のみ選定する。

6.4.2 海産物摂取シナリオ(変動シナリオ)

本シナリオにおける被ばく線量評価の結果,重要核種はC-14と なった。2番目以降の核種の相対重要度は1%未満となり,本シナ リオでは1核種のみの選定とする。

<u>6</u>.<u>4</u>.3 海岸活動シナリオ

海岸活動シナリオの被ばく線量評価の結果が,「第二種廃棄物埋設施設 の位置,構造及び設備の基準に関する規則の解釈」第9条の基準値(基本 シナリオ:10µSv/y以下,変動シナリオ:300µSv/yを超えないこと)に 比べて4桁以上小さいことから被ばく線量への寄与は小さい。よって,本 シナリオを主要な放射性核種の選定の対象外とした。

<u>6</u>.<u>4</u>.4 井戸水飲用摂取シナリオ

本シナリオにおける被ばく線量評価の結果,重要核種はC1-36 となった。2番目以降で相対重要度が1%以上の核種はSr-90,C -14, H-3, Ca-41 及びEu-152 の5 核種となった。また,本 シナリオでは, 線を放出する放射性物質の相対重要度の合計が 1%以上となるため,全 として 線を放出する放射性物質を選定 する。よって,本シナリオでは7 核種を選定する。

6.4.5 跡地利用建設シナリオ

本シナリオにおける被ばく線量評価の結果,重要核種はEu-152 となった。2番目以降で相対重要度が1%以上の核種はCo-60,C s-137及びEu-154の3核種となり,本シナリオでは4核種を選 定する。

6.4.6 跡地利用居住シナリオ

本シナリオにおける被ばく線量評価の結果,重要核種はEu-152 となった。2 番目以降で相対重要度が 1%以上の核種はCo-60, Cs-137及びEu-154の3核種となり,本シナリオでは4核種を 選定する。

6.4.7 跡地利用家庭菜園シナリオ

本シナリオにおける被ばく線量評価の結果,重要核種はC1-36 となった。2 番目以降で相対重要度が 1%以上の核種はSr-90, C-14 及びH-3の3核種となり,本シナリオでは4核種を選定す る。

6.4.8 跡地利用畜産物摂取シナリオ

本シナリオにおける被ばく線量評価の結果,重要核種はC1-36 となった。2番目以降の核種の相対重要度は1%未満とな<u>り</u>,本シ ナリオでは1核種のみ選定する。 6.5 主要な放射性核種の選定

<u>6</u>.<u>4</u>線量評価結果の相対的評価により,<u>10</u>核種を選定する。選定した<u>10</u>核種を<u>第28表</u>に示す。

なお,主要な放射性核種として選定した<u>10</u>核種には,「核燃料物質又は 核燃料物質によって汚染された物の第二種廃棄物埋設の事業に関する規 則」の別表第二に記載された3核種(Co-60,Sr-90,Cs-137) が含まれているため,追加選定核種はない。

第1図 選定フロー

<u>第2図 L3対象物の放射能量の評価フロー</u>

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(1/23)</u>

	17	7	190			
	ORIGEN2/	DECAY.LIB		JENDL/TND-2012		
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日
H-1	0.00E+00	安定	-	0.00E+00	安定	-
H-2	0.00E+00	安定	1. 	0.00E+00	安定	:
H-3	3.90E+08	S	0	1.23E+01	Y	0
H-4	1.00E-03	s	-			
He-3	0.00E+00	安定	0	0.00E+00	安定	3
He-4	0.00E+00	安定	—	0.00E+00	安定	—
He-6	8.08E-01	S	-	8.07E+02	MS	—
Li-6	0.00E+00	安定	—	0.00E+00	安定	—
Li-7	0.00E+00	安定	0	0.00E+00	安定	
Li-8	8.42E-01	S		8.40E+02	MS	
Be-8	2.00E-16	S		6.70E-17	S	
Be-9	0.00E+00	安定	—	0.00E+00	安定	-
Be-10	5.05E+13	S	0	1.51E+06	Y	0
Be-11	1.36E+01	S		1.38E+01	S	
B-10	0.00E+00	安定	-	0.00E+00	安定	—
B-11	0.00E+00	安定	—	0.00E+00	安定	-
B-12	2.03E-02	S	—	2.02E+01	MS	_
C-12	0.00E+00	安定	—	0.00E+00	安定	_
C-13	0.00E+00	安定	—	0.00E+00	安定	_
C-14	1.81E+11	S	0	5.70E+03	Y	0
C-15	2.45E+00	S	-	2.45E+00	S	-
N-13	5.98E+02	s	(9.97E+00	M	
N-14	0.00E+00	安定		0.00E+00		
N-15	0.00E+00	安定	-	0.00E+00	安定	-
N-16	7.12E+00	s		7.13E+00	S	-
0-16	0.00E+00	安定		0.00E+00	安定	
0-17	0.00E+00	安定	-	0.00E+00		—
0-18	0.00E+00	安定		0.00E+00	安定	-
0-19	2.90E+01	S	_	2.69E+01	S	-
F-19	0.00E+00	安定		0.00E+00	安定	
F-20	1.14E+01	<u>s</u>		1.12E+01	<u>S</u>	
Ne-20	0.00E+00			0.00E+00		
Ne-21	0.00E+00		_	0.00E+00		
Ne-22	0.00E+00	女正	_	0.00E+00		
Ne-23	3.72E+01	S		3.72E+01	5	
Na-22	8.21E+07	s ratio	0	2.60E+00	۲ صط	0
Na-23	0.00E+00	安正		0.00E+00		
Na-24	1.00E-02	s		1.50E+01		
Na-24m	5.06E±01	<u>s</u>		5.01E+01	1013	
Mg-24	0.00E+00	安定	_	0.00E+00	安定	_
Mg-25	0.00E+00	<u></u> 安定		0.00E+00		
Mg-26	0.00E+00	<u></u> 安定		0.00E+00		
Mg-27	5.68E+02	<u></u>	_	9.46E+00	M	_
Mg-28	7.53E+04	5		2.09E+01	<u>н</u>	
AI-27	0.00E+00	。 安定		0.00E+00		
AI-28	1 34E+02		_	2 24E+00	M	_
AI-29	3.91E+02	<u> </u>	_	6.56E+00	M	_
AI-30	3.69E+00	<u> </u>	_	3.60E+00	S	_
Si-28	0.00E+00	安定	_	0.00E+00	安定	_
Si-29	0.00E+00	安定	-	0.00E+00	安定	-
Si-30	0.00E+00	安定	12	0.00E+00	安定	12
Si-31	9.44E+03	s	-	1.57E+02	M	-
Si-32	6.50E+02	v	0	1.53E+02	Y	0
P-31	0.00E+00	安定		0.00E+00	安定	_
P-32	1.43E+01	d	_	1.43E+01	D	_
P-33	2.50E+01	d	-	2.53E+01	D	-
P-34	1.24E+01	S	1. 	1.24E+01	S	2.

<u> 第1表 ORIGEN2 附属ライブラリより抽出した核種(2/23)</u>

	177				190		
	ORIGEN2/D	ECAY.LIB		JENDL/TND-2012			
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日	
S-32	0.00E+00	安定	-	0.00E+00	安定	-	
S-33	0.00E+00	安定	-	0.00E+00	安定	$\sim \rightarrow$	
S-34	0.00E+00	安定	-	0.00E+00	安定	_	
S-35	8.80E+01	d	0	8.75E+01	D	0	
S-36	0.00E+00	安定		0.00E+00	安定	-	
S-37	5.06E+00	m		5.05E+00	М		
S-250	0.00E+00	安定	_			_	
CI-35	0.00E+00	安定	-	0.00E+00	安定	8 	
CI-36	9.50E+12	s	0	3.01E+05	Y	0	
CI-37	0.00E+00	安定	_	0.00E+00	安定	80-00	
CI-38	2.23E+03	S		3.72E+01	м	_	
CI-38m	7.16E-01	s	-	7.15E+02	MS	13 	
Ar-36	0.00E+00	安定	_	0.00E+00	安定	10000	
Ar-37	3.03E+06	s	0	3.50E+01	D	0	
Ar-38	0.00E+00	安定	_	0.00E+00	安定	-	
Ar-39	2.69E+02	v	0	2.69E+02	Y	0	
Ar-40	0.00E+00	安定	_	0.00E+00	安定		
Ar-41	6.58E+03	s	_	1.10E+02	安定	10 <u></u> 1	
Ar-42	3 30E+01	v	0	3.29E+01	安定	-	
K-39	0.00E+00	安定		0.00F+00	安定		
K-40	4 04E+16	<u></u>	0	1.28E+09	安定	_	
K-41	0.00E+00	安定	<u> </u>	0.00E+00	<u></u>	_	
K-42	445E+04	~~~	-	1 24E+01	<u> </u>	-	
K-43	814E+04	5		2 23E+01	H	_	
K-44	2 20E+01	 	_	2.20E+01	M	2 <u></u>	
Ca-40	0.00E+00	安定		0.00E+00	安定	_	
Ca-41	8 10E+01	kv	0	1.02E+05	× ×	0	
Ca-42	0.00E+00	安定	<u> </u>	0.00E+00	安定	<u> </u>	
Ca-43	0.00E+00	<u></u> 安定	_	0.00E+00	<u></u> 安定		
Ca-44	0.00E+00		_	0.00E+00			
Ca-45	141E+07		0	1.63E+02		0	
Ca-46	0.00E+00	。	<u> </u>	0.00E+00	安定	<u> </u>	
Ca-47	3 92E+05	<u></u>	-	4.54E+00		·	
Ca-48	0.00E+00	安定	0	6.00E+18		0	
Ca-49	8 80E+00	 m	_	872E+00	M	<u> </u>	
Sc-45	0.00E+00	安定	-	0.00E+00	安定		
Sc-46	7.24E+06		0	8 38E+01	<u> </u>	0	
Sc-46m	1.87E+01		<u> </u>	1.88E+01	5	<u> </u>	
Sc-47	2 90E+05	 	_	3 35E+00		_	
Sc-48	1.58E+05	5	_	437E+01	<u> </u>		
Sc-49	575E+01	 	_	5.72E+01	M		
Sc-50	1.03E+02	e		1.03E+02	S	<u> 19 - 19</u>	
Ti-46	0.00E+00	安定		0.00E+00	安定	-	
Ti-47	0.00E+00			0.00E+00			
Ti-48	0.00E+00			0.00E+00		_	
Ti-49	0.00E+00			0.00E+00		_	
Ti-50	0.00E+00		_	0.00E+00			
Ti-51	3.46E+02			5.76E+00	<u></u>		
11 51	2.95E+07		0	3.70E+00		0	
V 49	2.05E+07	5	- č	1.40E+17	<u> </u>		
V-51	4.00E+10	y 		0.005+00			
V-52	2.25E+02	又化		374E+00	<u></u>		
V-52	0.66E±01	5		1.61E±00	M		
V-54	5.00E+01	5	_	4.985+01	0		
Cr=50	0.005+00	安守		1.90E+17		0	
0-50	2.20E+00	又上		1.00E+17	1		
01-51	2.39E+00		_	2.7/E+01		_	
01-52	0.000000	安定 空空		0.000+00	安定 空空		
Ur-53	0.00E+00	女正	_	0.00E+00	女正		

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(3/23)</u>

	177				190		
	ORIGEN2/D	DECAY.LIB		JENDL/TND-2012			
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日	
Cr-54	0.00E+00	安定	_	0.00E+00	安定	_	
Cr-55	2.13E+02	S	-	3.50E+00	М	-	
Mn-54	2.70E+07	s	0	3.12E+02	D	0	
Mn-55	0.00E+00	安定	—	0.00E+00	安定	-	
Mn-56	9.28E+03	S	-	2.58E+00	н	_	
Mn-57	9.66E+01	S	-	8.54E+01	S	-	
Mn-58	6.53E+01	s	—	3.00E+00	S	-	
Fe-54	0.00E+00	安定	2 <u></u> 9	0.00E+00	安定	_	
Fe-55	2.60E+00	У	0	2.74E+00	Y	0	
Fe-56	0.00E+00	安定	3 5-3 8	0.00E+00	安定	227	
Fe-57	0.00E+00	安定		0.00E+00	安定	-	
Fe-58	0.00E+00	安定	—	0.00E+00	安定	-	
Fe-59	4.50E+01	d	0	4.45E+01	D	0	
Co-58	6.12E+06	S	0	7.09E+01	D	0	
Co-58m	3.29E+04	S	_	9.04E+00	Н	-	
Co-59	0.00E+00	安定	1	0.00E+00	安定	-	
Co-60	1.66E+08	S	0	1.93E+03	D	0	
Co-60m	6.28E+02	S	2 <u></u> 6	1.05E+01	M		
Co-61	5.94E+03	S	-	1.65E+00	Н	-	
Co-62	9.00E+01	s	—	1.50E+00	М		
Co-72	1.23E-01	s	—	9.00E+01	MS	—	
Co-73	1.16E-01	S	·	4.10E+01	MS	-	
Co-74	1.08E-01	S	—				
Co-75	8.02E-02	s	—			-	
Ni-58	0.00E+00	安定	_	0.00E+00	安定	_	
Ni-59	8.00E+01	ky	0	7.60E+04	Y	0	
Ni-60	0.00E+00	安定	1	0.00E+00	安定		
Ni-61	0.00E+00	安定	—	0.00E+00	安定	-	
Ni-62	0.00E+00	安定	_	0.00E+00	安定	-	
Ni-63	9.20E+01	У	0	1.00E+02	Y	0	
Ni-64	0.00E+00	安定	-	0.00E+00	安定		
Ni-65	9.07E+03	S	-	2.52E+00	H		
Ni-66	1.97E+05	S		5.46E+01	H	-	
Ni-72	2.42E+00	S		1.57E+00	S		
Ni-73	3.94E-01	S	_	8.40E-01	S	_	
Ni-74	6.48E-01	S	-	6.80E-01	S	_	
Ni-75	1.80E-01	S		3.44E+02	MS	-	
NI-76	2.68E-01	S		2.38E+02	MS		
NI=77	1.03E-01	S	_	1.28E+02	MS		
NI-78	1.38E-01	S		1.10E+02	M5		
Cu=62	0.00E+00			9.07E+00			
Cu=64	4.57E+04	又正		1.27E+01	<u>又</u> 止		
Cu-65	4.07E+04		_	0.005+00		_	
Cu-66	3.06E+02	<u></u>		5.12E+00	M		
Cu-67	2.23E+05	5		6 18E+01	<u>н</u>		
Cu-72	6.00E+00	S	_	6.63E+00	<u> </u>	_	
Cu=73	3.95E+00	5		4 20E+00	<u> </u>		
Cu-74	573E-01	5		1.63E+00	<u> </u>		
Cu-75	7.67E-01	5	-	1.22E+00	S	-	
Cu-76	221E-01	5	_	6.41E-01	S	-	
Cu-77	2.95F-01	s		4.69F-01	S	_	
Cu-78	1.21E-01	S	-	3.42E+02	MS	_	
Cu-79	1.47E-01	s	-	1.88E+02	MS	-	
Cu-80	9.11E-02	s	_			_	
Cu-81	7.45E-02	s	_			_	
Zn-63	3.85E+01	m	-	3.85E+01	М	-	
Zn-64	0.00E+00	安定		0.00E+00	安定	-	

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(4/23)</u>

	177				190		
	ORIGEN2/E	DECAY.LIB	11.1-1-1-11	JENDL/TND-2012			
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日	
Zn-65	2.11E+07	S	0	2.44E+02	D	0	
Zn-66	0.00E+00	安定		0.00E+00	安定		
Zn-67	0.00E+00	安定	(7 <u></u>)	0.00E+00	安定	<u></u> 2	
Zn-68	0.00E+00	安定	-	0.00E+00	安定	-	
Zn-69	3.42E+03	S		5.64E+01	М		
Zn-69m	4.95E+04	S	-	1.38E+01	н	—	
Zn-70	0.00E+00	安定	_	0.00E+00	安定	-	
Zn-71	2.40E+00	m		2.45E+00	M	-	
Zn-71m	3.92E+00	h	5 	3.96E+00	н		
Zn-72	1.67E+05	s	34 <u></u> 4	4.65E+01	Н	<u></u> c	
Zn-73	2.35E+01	S	—	2.35E+01	S	<u> </u>	
Zn-74	9.50E+01	S	10 - 0	9.56E+01	S	-	
Zn-75	9.00E+00	S	—	1.02E+01	S	—	
Zn-76	5.40E+00	S	-	5.70E+00	S	-	
Zn-77	1.40E+00	S	-	2.08E+00	S		
Zn-78	2.43E+00	S	—	1.47E+00	S	—	
Zn-79	3.82E-01	s	<u></u>	9.95E-01	S	1 <u>2</u> 2	
Zn-80	7.11E-01	S	-	5.45E-01	S	-	
Zn-81	1.29E-01	S	_	2.90E-01	S	—	
Zn-82	1.35E-01	s	—			—	
Zn-83	8.39E-02	S	-				
Ga-69	0.00E+00	安定		0.00E+00	安定	-	
Ga-70	1.27E+03	S	—	2.11E+01	М	—	
Ga-71	0.00E+00	安定	<u> </u>	0.00E+00	安定		
Ga-72	5.08E+04	S	—	1.41E+01	Н	—	
Ga-72m	3.97E-02	s	50 6	3.97E+01	MS		
Ga-73	1.76E+04	S	87 <u></u> 2	4.86E+00	н		
Ga-74	4.86E+02	S	-	8.12E+00	М	-	
Ga-75	1.14E+02	S	_	1.26E+02	S	-	
Ga-76	2.71E+01	S	-	3.26E+01	S	—	
Ga-77	1.30E+01	S	· · · · ·	1.32E+01	S	-	
Ga-78	4.90E+00	S	-	5.09E+00	S	-	
Ga-79	2.86E+00	S	10.000 N	2.85E+00	S		
Ga-80	1.70E+00	S		1.70E+00	S		
Ga-81	7.05E-01	S		1.22E+00	S	—	
Ga-82	1.54E-01	S	8-3	5.99E-01	S		
Ga-83	1.48E-01	S	—	3.10E-01	S	—	
Ga-84	9.89E-02	S	_	8.50E+01	MS	-	
Ga-85	9.20E-02	S					
Ge-70	0.00E+00	安定	—	0.00E+00	安定	-	
Ge-71	1.18E+01	d	<u> </u>	1.14E+01	D	· · · · ·	
Ge-71m	2.19E-02	S	-	2.04E+01	MS		
Ge-72	0.00E+00	安定	-	0.00E+00	安定	35-32	
Ge-73	0.00E+00	安定	_	0.00E+00	安定	-	
Ge-73m	5.30E-01	S		4.99E-01	S		
Ge-74	0.00E+00	安定		0.00E+00	安定	· · · ·	
Ge-75	4.97E+03	S	—	8.28E+01	M	—	
Ge-75m	4.89E+01	S	_	4.77E+01	S		
Ge-76	0.00E+00	安定	-	0.00E+00	安定	-	
Ge-77	4.07E+04	s	1	1.13E+01	Н	(, , ,)	
Ge-77m	5.43E+01	S	0 <u>1 11</u>	5.29E+01	S	<u> </u>	
Ge-78	5.22E+03	S		8.80E+01	М	-	
Ge-79	4.30E+01	S	-	1.90E+01	S		
Ge-80	2.40E+01	S	—	2.95E+01	S	-	
Ge-81	1.01E+01	S	· · · ·	7.60E+00	S	-	
Ge-82	4.60E+00	S	1	4.55E+00	S	-	
Ge-83	1.90E+00	S	8 6 7	1.85E+00	S		
Ge-84	1.20E+00	S		9.47E-01	S	-	

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(5/23)</u>

	177				190		
	ORIGEN2/I	DECAY.LIB		JENDL/TND-2012			
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日	
Ge-85	2.34E-01	s		5.35E+02	MS	_	
Ge-86	2.59E-01	S	-				
Ge-87	1.26E-01	S				-	
Ge-88	1.43E-01	S				—	
As-75	0.00E+00	安定	-	0.00E+00	安定		
As-76	9.48E+04	S	-	2.62E+01	Н		
As-77	1.40E+05	s	74.2	3.88E+01	Н	—	
As-78	5.44E+03	S	<u> </u>	9.07E+01	М	-	
As-79	5.40E+02	S	-	9.01E+00	М		
As-80	1.65E+01	S		1.52E+01	S	(i 	
As-81	3.20E+01	S		3.33E+01	S	_	
As-82	2.10E+01	S	-	1.91E+01	S	-	
As-82m	1.30E+01	S		1.36E+01	S	-	
As-83	1.35E+01	S		1.34E+01	S	-	
As-84	5.80E+00	S	-	4.50E+00	S	_	
As-85	2.03E+00	S		2.03E+00	S	() (
As-86	9.00E-01	S	1000	9.45E-01	S	: .	
As-87	3.00E-01	S		4.80E-01	S	_	
As-88	1.30E-01	S	-				
As-89	1.29E-01	S					
As-90	9.01E-02	s	-			—	
Se-74	0.00E+00	安定	-	0.00E+00	安定	_	
Se-75	1.04E+07	S	0	1.20E+02	D	0	
Se-76	0.00E+00	安定		0.00E+00	安定		
Se-77	0.00E+00	安定	-	0.00E+00	安定		
Se-77m	1.75E+01	S	-	1.74E+01	S	-	
Se-78	0.00E+00	安定	1000	0.00E+00	安定	3 .	
Se-79	2.05E+12	S	0	3.27E+05	Y	0	
Se-79m	2.33E+02	S	-	3.92E+00	M	-	
Se-80	0.00E+00	安定	1000	0.00E+00	安定		
Se-81	1.11E+03	S	1000	1.85E+01	M		
Se-81m	3.44E+03	S	-	5.73E+01	M		
Se-82	0.00E+00	女正	Ø	8.30E+19	Y	0	
Se-83	1.35E+03	S		2.23E+01	<u>M</u>	_	
Se-83m	7.00E+01	S		7.01E+01	5		
Se-84	1.98E+02	S		3.10E+00	<u>M</u>	-	
Se-85	3.90E+01	S		3.17E+01	5	_	
Se-85m	1.90E+01	S		1 525 101	0		
Se-80	1.00E+01	S	_	1.03E+01	5	_	
Se-87	5.60E+00	S		3.29E+00	5		
Se-00	1.50E+00	s		1.53E+00	5		
Se-09	4.10E-01	s		4.10E-01	5		
Se-90	1.955-01	s		2 705-01	\$		
Se-91	2.48E-01	s		2.70E-01	3		
Se 92	1.075-01	5					
Se 33	0.00E+00			0.005+00	安安	_	
Br-79m	1.96E+00	<u></u>		4.86E+00	S/E		
Br-90	1.04E+02	5		1.77E+01	M		
Br-80m	1.595+04	5	_	4.42E+00		_	
Br-91	0.005+00		_	0.00E+00	安定	_	
Br-82	1.27E+05	<u></u>	1000	3.53E+01		24 <u>-31</u> 7 <u>2-3</u> 1	
Br-82m	3.685+02	5	_	613E+00	M	_	
Br-83	8.60E+02			240E+00	H	-	
Br-84	1.91E+03	 c	_	318F+01	M	_	
Br-84m	3 60E+02			6.00E+00	M	_	
Br-85	1.72E+02	9	_	2.90E+00	M	_	
Br-86	5 50E+01	e	-	5.50E+01	S	_	
L. 00	0.000-01	9		0.000-01	<u> </u>		

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(6/23)</u>

	177				190		
	ORIGEN2/	DECAY.LIB		JENDL/TND-2012			
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日	
Br-86m	4.50E+00	S	-			_	
Br-87	5.58E+01	s		5.56E+01	S	-	
Br-88	1.63E+01	S	(. 	1.65E+01	S	(1 	
Br-89	4.50E+00	S	—	4.40E+00	S	—	
Br-90	1.60E+00	S		1.92E+00	S		
Br-91	6.00E-01	S		5.41E-01	S		
Br-92	3.00E-01	S	2. 	3.43E-01	S		
Br-93	2.01E-01	S		1.02E+02	MS	_	
Br-94	1.11E-01	S		7.00E+01	MS		
Br-95	1.17E-01	S	30-00			0	
Br-96	8.38E-02	S					
Kr-78	0.00E+00	安定	0	2.00E+21	Y	0	
Kr-79	3.49E+01	h		3.50E+01	H		
Kr-79m	5.50E+01	s the second se		5.00E+01	<u> </u>	10 1	
Kr-80	0.00E+00	女正		0.00E+00			
Kr-81	6.62E+12	S	0	2.29E+05	Ŷ	0	
Kr-81m	1.33E+01	s 中中		1.31E+01		20 00	
Kr-02	0.00E+00	<u></u>		0.00E+00	<u></u>		
Kr-83m	6.59E+03	<u>XE</u>	_	1.83E+00		_	
Kr-94	0.09E+00			0.00E+00		_	
Kr-85	3 38E+08	<u></u>	0	1.08E+01	× Æ	0	
Kr-85m	1.61E+04	5	<u> </u>	4 48E+00	н Н	<u> </u>	
Kr-86	0.00E+00	安定		0.00E+00	安定		
Kr-87	4 58E+03	<u> </u>	_	7.63E+01	 M	_	
Kr-88	1.02E+04	s	_	2.84E+00	н		
Kr-89	1.90E+02	s	_	3.15E+00	М	_	
Kr-90	3.23E+01	S	11 <u></u> 1	3.23E+01	S	N <u></u>	
Kr-91	8.70E+00	S	-	8.57E+00	S	<u> </u>	
Kr-92	1.84E+00	S		1.84E+00	S	3 	
Kr-93	1.27E+00	s		1.29E+00	S	_	
Kr-94	2.10E-01	S		2.00E-01	S	-	
Kr-95	5.00E-01	S		7.80E-01	S	1. -	
Kr-96	4.40E-01	S		8.00E+01	MS	_	
Kr-97	1.49E-01	S	_	6.30E+01	MS	_	
Kr-98	2.24E-01	s The		4.60E+01	<u>MS</u>		
RD-85	0.00E+00			1.96E+00	<u></u>		
Rb-00	6.11E+01	s		1.00E+01	U		
Pb-97	1.49E+19	s	0	1.02E+00		0	
Rb-88	1.40E+03	5	<u> </u>	1.78E+01	M	<u> </u>	
Rb-89	912E+02	<u>s</u>	_	1.52E+01	M	_	
Rb-90	1.53E+02	s		1.58E+02	S	_	
Rb-90m	2.58E+02	s	-	2.58E+02	S	_	
Rb-91	5.82E+01	s		5.84E+01	S	<u></u>	
Rb-92	4.48E+00	S	(-)	4.49E+00	S	. 	
Rb-93	5.80E+00	S		5.84E+00	S		
Rb-94	2.69E+00	S		2.70E+00	S		
Rb-95	3.60E-01	S		3.78E+02	MS		
Rb-96	2.07E-01	S	-	2.01E+02	MS	-	
Rb-97	1.70E-01	S		1.70E+02	MS		
Rb-98	1.40E-01	S	_	1.14E+02	MS	_	
Rb-99	7.60E-02	S		5.03E+01	MS	22 -	
Rb-100	1.01E-01	S		0.10E+01	MS	-	
Sr-94	1.13E-01			3.20E-02			
Sr-85	5.60E+06	<u>×</u>	0	6.48E+01		0	
Sr-85m	7.00E+01		<u> </u>	6 76E+01	N	<u> </u>	
	1.000-01			0.702.01			

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(7/23)</u>

	17	7	190			
	ORIGEN2/D	DECAY.LIB		JENDL/TND-2012		
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日
Sr-86	0.00E+00	安定	-	0.00E+00	安定	-
Sr-87	0.00E+00	安定	<u> </u>	0.00E+00	安定	[]
Sr-87m	1.01E+04	S	-	2.82E+00	Н	_
Sr-88	0.00E+00	安定	_	0.00E+00	安定	
Sr-89	4.36E+06	S	0	5.05E+01	D	0
Sr-90	9.19E+08	S	0	2.88E+01	Y	0
Sr-91	3.42E+04	s	_	9.63E+00	Н	—
Sr-92	9.76E+03	S	_	2.71E+00	Н	_
Sr-93	4.50E+02	S		7.42E+00	М	1 -
Sr-94	7.56E+01	S	-	7.53E+01	S	
Sr-95	2.60E+01	S	_	2.39E+01	S	—
Sr-96	4.00E+00	S		1.07E+00	S	—
Sr-97	2.00E-01	S	—	4.26E+02	MS	—
Sr-98	8.50E-01	S	-	6.53E-01	S	
Sr-99	5.60E-01	s	_	2.69E-01	S	_
Sr-100	1.05E+00	S	-	2.02E+02	MS	.) .
Sr-101	2.52E-01	S		1.18E+02	MS	
Sr-102	4.15E-01	S	-	6.90E+01	MS	-
Sr-103	1.39E-01	S	-			—
Sr-104	1.93E-01	s				-
Y-89	0.00E+00	安定	-	0.00E+00	安定	-
Y-89m	1.61E+01	S		1.57E+01	S	_
Y-90	2.30E+05	S	-	6.40E+01	Н	
Y-90m	1.12E+04	S		3.19E+00	Н	
Y-91	5.06E+06	S	0	5.85E+01	D	0
Y-91m	2.98E+03	S		4.97E+01	M	(.
Y-92	1.27E+04	S		3.54E+00	H	-
Y-93	3.64E+04	S		1.02E+01	H	
Y-94	1.15E+03	S		1.87E+01	M	
Y-95	6.30E+02	S		1.03E+01	N	
Y-96	1.38E+02	S	_	5.34E+00	S	_
Y-97	1.11E+00	S	-	3.75E+00	5	-
Y-98	3.00E-01	S		0.48E-01	<u> </u>	_
1-99 V-100	8.00E-01	S		1.46E+00	S	
Y-101	7.30E-01	S		7.35E+02	MS	
Y-102	9.70E-01	S		4.50E-01	5	_
V-102	2.73E-01	<u>s</u>		2.30E-01	3	
V-104	1.44E-01	5		1.80E+02	MS	_
Y-105	1.44E 01	s	_	1.002.02	WIG	_
Y-106	9.29E-02	<u>s</u>	_			_
Y-107	1.05E-01		_			_
7r-89	2.82E+05	5	_	7.84F+01	н	_
Zr-90	0.00E+00	。 安定	-	0.00E+00	安定	—
Zr-90m	8.30E-01	<u></u>	_	8.09E+02	MS	
Zr-91	0.00E+00	安定	-	0.00E+00	安定	-
Zr-92	0.00E+00	安定	-	0.00E+00	安定	_
Zr-93	4.83E+13	s	0	1.53E+06	Y	0
Zr-94	0.00E+00	安定	_	0.00E+00	安定	_
Zr-95	5.53E+06	s	0	6.40E+01	D	0
Zr-96	0.00E+00	安定	0	3.90E+19	Y	Õ
Zr-97	6.08E+04	S		1.67E+01	Н	_
Zr-98	3.10E+01	S	-	3.07E+01	S	-
Zr-99	2.40E+00	s	—	2.10E+00	S	—
Zr-100	7.10E+00	S		7.10E+00	S	— — — — ,
Zr-101	3.30E+00	S		2.30E+00	S	—
Zr-102	2.86E+01	s	-	2.90E+00	S	-
Zr-103	1.77E+00	s	—	1.30E+00	S	-

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(8/23)</u>

	177				190		
	ORIGEN2/	DECAY.LIB		JENDL/TND-2012			
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日	
Zr-104	3.78E+00	S	-	1.20E+00	S	-	
Zr-105	5.59E-01	s		6.00E-01	S		
Zr-106	9.80E-01	s	(a <u></u> 1)			<u> </u>	
Zr-107	2.49E-01	S	-			-	
Zr-108	4.08E-01	S					
Zr-109	1.39E-01	S	-			-	
Nb-91	1.00E+04	У	0	6.80E+02	Y	0	
Nb-92	1.02E+01	d	O	3.47E+07	Y	0	
Nb-93	0.00E+00	安定		0.00E+00	安定		
Nb-93m	4.29E+08	s	0	1.61E+01	Y	0	
Nb-94	6.41E+11	S	0	2.03E+04	Y	0	
Nb-94m	3.76E+02	S		6.26E+00	M	-	
Nb-95	3.04E+06	S	0	3.50E+01	D	0	
Nb-95m	3.12E+05	S	_	3.61E+00	D	-	
Nb-96	8.41E+04	S		2.34E+01	Н	-	
Nb-97	4.33E+03	S	—	7.21E+01	M	-	
Nb-97m	6.00E+01	s	<u></u>	5.27E+01	S		
Nb-98	2.80E+00	S	-	2.86E+00	S	-	
Nb-98m	3.09E+03	S		5.13E+01	M		
Nb-99	1.43E+01	S	-	1.50E+01	S	-	
Nb-99m	1.56E+02	S	—	2.60E+00	М	-	
Nb-100	2.40E+00	S	-	1.50E+00	S	-	
Nb-100m	2.41E+00	S		2.99E+00	S		
Nb-101	7.00E+00	S		7.10E+00	S		
Nb-102	3.00E+00	S	_	1.30E+00	S		
Nb-103	1.5/E+01	S		1.50E+00	S		
Nb-104	1.00E+00	S		4.80E+00	S		
Nb-105	1.80E+00	S	_	2.95E+00	S		
Nb-106	5.35E-01	S	_	9.30E-01	S		
ND-107	6.69E-01	S		3.00E-01	5		
Nb-108	2.22E-01	S		1.93E-01	5		
Nb-110	1.26E-01	s		1.90E-01	3		
Nb-111	1.20E-01	5		1.70E-01	3		
Nb-112	8.51E-02	5	_			· · · ·	
Mo-92	0.00E+00	安定	_	0.00E+00	安定	_	
Mo-93	1.10E+11		0	4.00E+03		0	
Mo-93m	2 47E+04	5	Ĕ	6.85E+00	H	<u> </u>	
Mo-94	0.00E+00	安定	-	0.00E+00	安定	-	
Mo-95	0.00E+00	安定	_	0.00E+00		-	
Mo-96	0.00E+00	安定	0	0.00E+00	安定	_	
Mo-97	0.00E+00	安定		0.00E+00	安定		
Mo-98	0.00E+00	安定	(,)	0.00E+00	安定	-	
Mo-99	2.38E+05	S	· · · · · · · · · · · · · · · · · · ·	6.59E+01	Н	—	
Mo-100	0.00E+00	安定	0	1.20E+19	Y	0	
Mo-101	8.77E+02	S	· · · · ·	1.46E+01	М	. — :	
Mo-102	6.66E+02	s	—	1.13E+01	М	—	
Mo-103	6.00E+01	S	· · · · · ·	6.75E+01	S		
Mo-104	9.60E+01	S	-	6.00E+01	s		
Mo-105	5.40E+01	s	-	3.56E+01	S	-	
Mo-106	9.00E+00	S	14-11	8.73E+00	S	_	
Mo-107	6.39E+00	S	3-4	3.50E+00	S	-	
Mo-108	1.50E+00	S	1. 1	1.09E+00	S	-	
Mo-109	1.03E+00	S	-	5.30E-01	S	-	
Mo-110	1.89E+00	S	_	3.00E-01	S	-	
Mo-111	3.92E-01	S	-			-	
Mo-112	6.89E-01	S	-			-	
Mo-113	1.97E-01	S	_			—	

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(9/23)</u>

	177				190		
	ORIGEN2/E	DECAY.LIB	N/ \-+++0	JENDL/TND-2012			
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日	
Mo-114	3.22E-01	S	-			,	
Mo-115	1.16E-01	S	1000			1. .	
Tc-97	2.60E+00	My	0	2.60E+06	Y	0	
Tc-97m	9.00E+01	d	0	9.01E+01	D	0	
Tc-98	1.33E+14	S	0	4.20E+06	Y	0	
Tc-99	6.72E+12	S	0	2.11E+05	Y	0	
Tc-99m	2.17E+04	S		6.02E+00	Н	10 <u>-</u>	
Tc-100	1.58E+01	S		1.55E+01	S		
Tc-101	8.52E+02	S	743	1.42E+01	М	s .	
Tc-102	5.28E+00	s	<u>1112</u>	5.28E+00	S		
Tc-102m	2.61E+02	S					
Tc-103	5.00E+01	S		5.42E+01	S	-	
Tc-104	1.09E+03	S		1.83E+01	м	—	
Tc-105	4.80E+02	S	<u></u>	7.60E+00	М		
Tc-106	3.70E+01	S		3.56E+01	S		
Tc-107	2.90E+01	S		2.12E+01	S		
Tc-108	5.20E+00	s	<u></u>	5.17E+00	S	<u></u> s	
Tc-109	5.10E+01	S		8.60E-01	S		
Tc-110	8.30E-01	S		9.20E-01	S		
Tc-111	1.34E+00	S	<u>1997</u>	2.90E+02	MS	1 	
Tc-112	3.55E-01	S		2.80E-01	S	—	
Tc-113	4.58E-01	S		1.70E+02	MS	(1 1-11 -	
Tc-114	1.73E-01	S	—	1.50E+02	MS	-	
Tc-115	2.23E-01	S	<u> </u>			<u>1 – 1</u> 4	
Tc-116	1.06E-01	S	-			1. 	
Tc-117	1.35E-01	s	1.23				
Tc-118	7.72E-02	S	1010				
Ru-96	0.00E+00	安定	-	0.00E+00	安定	—	
Ru-97	2.51E+05	S		2.90E+00	D		
Ru-98	0.00E+00	安定		0.00E+00	安定		
Ru-99	0.00E+00	安定		0.00E+00	安定		
Ru-100	0.00E+00	安定	-	0.00E+00	安定	1. 1	
Ru-101	0.00E+00	安定	1400	0.00E+00	安定	10 <u></u> 10	
Ru-102	0.00E+00	安定	<u>1983 5</u>	0.00E+00	安定		
Ru-103	3.39E+06	S	0	3.93E+01	D	0	
Ru-104	0.00E+00	安定		0.00E+00	安定	-	
Ru-105	1.60E+04	s		4.44E+00	н	—	
Ru-106	3.18E+07	S	0	3.72E+02	D	0	
Ru-107	2.52E+02	S		3.75E+00	М	33 -0 0	
Ru-108	2.70E+02	S		4.55E+00	м	—	
Ru-109	3.50E+01	S	<u></u>	3.45E+01	S		
Ru-110	1.60E+01	S	-	1.16E+01	S		
Ru-111	1.54E+01	S		2.12E+00	S	—	
Ru-112	7.00E-01	S		1.75E+00	S	—	
Ru-113	2.77E+00	S	-	9.00E-01	S	-	
Ru-114	5.05E+00	S	-	5.30E-01	S	5 2	
Ru-115	7.29E-01	S		7.40E-01	S	-	
Ru-116	1.41E+00	S					
Ru-117	3.09E-01	S	-			—	
Ru-118	6.16E-01	s	1000 C				
Ru-119	1.77E-01	S	<u>1985</u>				
Ru-120	2.93E-01	S	-			3 3	
Rh-102	2.90E+00	у	0	2.07E+02	D	0	
Rh-103	0.00E+00	安定		0.00E+00	安定	-	
Rh-103m	3.37E+03	S		5.61E+01	М		
Rh-104	4.23E+01	S		4.23E+01	S	-	
Rh-104m	2.60E+02	S		4.34E+00	М	—	
Rh-105	1.27E+05	S	<u></u>	3.54E+01	Н	0 / _ +	

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(10/23)</u>

	177				190		
	ORIGEN2/	DECAY.LIB		JENDL/TND-2012			
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日	
Rh-105m	4.50E+01	S	_	4.00E+01	S	_	
Rh-106	2.99E+01	s		3.01E+01	S	-	
Rh-106m	7.92E+03	S	_	1.31E+02	м) —	
Rh-107	1.30E+03	S		2.17E+01	м	-	
Rh-108	1.68E+01	s	-	1.68E+01	S		
Rh-108m	3.54E+02	S				_	
Rh-109	9.00E+01	S	-	8.00E+01	S	-	
Rh-109m	5.00E+01	s	-			_	
Rh-110	2.90E+01	s	_	2.85E+01	S	_	
Rh-110m	3.00E+00	S	-				
Rh-111	6.30E+01	S	_	1.10E+01	S	-	
Rh-112	4.70E+00	s		2.10E+00	S		
Rh-113	9.00E-01	S	<u> </u>	2.80E+00	S	<u></u>	
Rh-114	1.70E+00	S		1.85E+00	S	-	
Rh-115	6.02E+00	S	—	9.90E-01	S		
Rh-116	8.33E-01	S	-	6.80E-01	S	-	
Rh-117	1.08E+00	S		4.40E-01	S		
Rh-118	2.95E-01	S		2.66E+02	MS	-	
Rh-119	4.48E-01	S	-			-	
Rh-120	1.62E-01	S	-			_	
Rh-121	2.21E-01	S	—		Ő. Ö	-	
Rh-122	1.05E-01	S	-			-	
Rh-123	1.34E-01	s	-			-	
Pd-102	0.00E+00	安定	_	0.00E+00	安定		
Pd-103	1.47E+06	s		1.70E+01	D		
Pd-104	0.00E+00	安定	_	0.00E+00	安定	-	
Pd-105	0.00E+00	安定	-	0.00E+00	安定	-	
Pd-106	0.00E+00	安定	_	0.00E+00	安定		
Pd-107	2.05E+14	s	0	6.50E+06	Y	0	
Pd-107m	2.13E+01	s	_	2.13E+01	S	_	
Pd-108	0.00E+00	安定	-	0.00E+00	安定	-	
Pd-109	4.85E+04	s	<u> </u>	1.37E+01	<u> </u>		
Pd-109m	2.81E+02	S		4.69E+00	M		
Pd-110	0.00E+00	安定	—	0.00E+00	安定	-	
Pd-111	1.32E+03	s	_	2.34E+01	M		
Pd-111m	1.98E+04	S		5.50E+00	Н	-	
Pd-112	7.24E+04	S	-	2.10E+01	Н	-	
Pd-113	9.00E+01	S	-	9.30E+01	S	-	
Pd-114	1.44E+02	S	-	2.42E+00	М	_	
Pd-115	3.80E+01	s	_	2.50E+01	S	-	
Pd-116	1.40E+01	s	—	1.18E+01	S	-	
Pd-117	5.00E+00	s	-	4.30E+00	S	_	
Pd-118	3.10E+00	S	_	1.90E+00	S	-	
Pd-119	1.71E+00	s		9.20E-01	S	- 1	
Pd-120	4.27E+00	S	—	5.00E-01	S	-	
Pd-121	6.22E-01	s	-			_	
Pd-122	1.27E+00	S	_			_	
Pd-123	3.10E-01	s	-	14			
Pd-124	5.60E-01	s	_			-	
Pd-125	1.83E-01	s	_			- <u></u>	
Pd-126	2.87E-01	s	-			-	
Ag-106	8.50F+00	d	-	2.40E+01	М	-	
Ag-107	0.00E+00	安定	_	0.00E+00	安定	-	
Ag-108	142E+02	<u></u>	_	2.38E+00	M	_	
Ag-108m	4 18E+02		0	4 38E+02	V	0	
Ag=100	0.00E+00			0.005+00	安空		
Ar=100m	3.065+01	<u>x</u>	_	3.065+01	S/E	_	
Ag-110	2465+01	5		3.50E+01	<u> </u>		
Ag-110	2.40E+01	S	-	2.40E+01	3		

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(11/23)</u>

177				190		
	ORIGEN2/	DECAY.LIB		JENDL/TND-2012		
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日
Ag-110m	2.16E+07	s	0	2.50E+02	D	0
Ag-111	6.44E+05	s	-	7.45E+00	D	_
Ag-111m	6.50E+01	S		6.48E+01	S	
Ag-112	1.13E+04	s		3.13E+00	н	—
Ag-113	1.91E+04	S	-	5.37E+00	Н	
Ag-113m	6.60E+01	s		6.87E+01	S	3
Ag-114	4.52E+00	S	707	4.60E+00	S	-
Ag-115	1.20E+03	S		2.00E+01	М	3 <u>—</u> 3
Ag-115m	1.70E+01	S		1.80E+01	S	
Ag-116	1.61E+02	s		2.68E+00	м	-
Ag-116m	1.04E+01	s	_	8.60E+00	S	—
Ag-117	7.32E+01	S		7.28E+01	S	-
Ag-117m	5.30E+00	S		5.34E+00	S	-
Ag-118	3.70E+00	S	-	3.76E+00	S	_
Ag-118m	2.80E+00	S	_	2.00E+00	S	-
Ag-119	6.00E+00	S	—	2.10E+00	S	-
Ag-120	1.17E+00	S		1.23E+00	S	
Ag-121	3.00E+00	S		7.80E-01	S	11 <u></u> 1
Ag-122	1.00E-01	s	-	5.29E-01	S	-
Ag-123	8.63E-01	s		2.96E+02	S	
Ag-124	2.69E-01	s		1.72E-01	S	—
Ag-125	3.82E-01	S	—	1.66E-01	S	_
Ag-126	1.56E-01	S		1.07E+02	MS	-
Ag-127	2.05E-01	S		1.09E+02	MS	—
Ag-128	1.02E-01	S	222	5.80E+01	MS	<u></u> _
Cd-106	0.00E+00	安定	—	0.00E+00	安定	_
Cd-107	2.34E+04	s		6.50E+00	Н	-
Cd-108	0.00E+00	安定	10-10-10-10-10-10-10-10-10-10-10-10-10-1	0.00E+00	安定	—
Cd-109	4.01E+07	S	0	4.61E+02	D	0
Cd-110	0.00E+00	安定		0.00E+00	安定	_
Cd-111	0.00E+00	安定		0.00E+00	安定	
Cd-111m	2.92E+03	s		4.85E+01	М	_
Cd-112	0.00E+00	安定		0.00E+00	安定	(1
Cd-113	0.00E+00	安定	0	8.04E+15	Y	0
Cd-113m	4.60E+08	S	0	1.41E+01	Y	0
Cd-114	0.00E+00	安定		0.00E+00	安定	
Cd-115	1.93E+05	S		5.35E+01	Н	-
Cd-115m	3.85E+06	S	0	4.46E+01	D	0
Cd-116	0.00E+00	安定	O	2.90E+19	Y	0
Cd-117	9.36E+03	S	-	2.49E+00	Н	-
Cd-117m	1.22E+04	S		3.36E+00	Н	
Cd-118	3.02E+03	S		5.03E+01	M	_
Cd-119	5.64E+02	S	-	2.69E+00	M	-
Cd-119m	1.92E+02	S		2.20E+00	м	.
Cd-120	5.08E+01	s		5.08E+01	S	_
Cd-121	1.28E+01	S	-	1.35E+01	S	_
Cd-122	5.50E+00	S		5.24E+00	S	
Cd-123	8.40E+00	S		2.10E+00	S	-
Cd-124	1.72E+01	S	-	1.25E+00	S	
Cd-125	1.62E+00	S	-	6.50E-01	S	-
Cd-126	3.77E+00	S		5.15E-01	S	
Cd-127	6.59E-01	S		4.30E-01	S	
Cd-128	1.29E+00	S	-	3.40E-01	S	
Cd-129	3.38E-01	S	500 500	2.70E-01	S	_
Cd-130	5.24E-01	S		1.62E+02	MS	-
Cd-131	1.19E-01	S	-	6.80E+01	MS	_
Cd-132	1.45E-01	S	-	9.70E+01	MS	-
[In-113	0.00E+00	安定		0.00E+00	安定	_

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(12/23)</u>

				190		
	URIGENZ/L	ECAT.LID	半減期	JEN	NDL/ TND-2	112
	半減期	単位	>30日	半減期	単位	>30日
In-113m	5.97E+03	S	-	9.95E+01	M	—
In-114	7.19E+01	s	_	1.20E+00	М	_
In-114m	4.28E+06	s	0	4.95E+01	D	0
In-115	1.58E+22	S	0	4.41E+14	Y	0
In-115m	1.55E+04	S		4.49E+00	<u>H</u>	-
In-116	1.41E+01	S	_	1.41E+01	S	-
In-116m	3.25E+03	S	_	5.44E+01	M	_
In-117	2.64E+03	S	_	4.32E+01	M	_
<u>In-11/m</u>	6.98E+03	S	_	1.16E+02	<u>M</u>	
In-118	5.00E+00	s		5.00E+00	5	_
In-118m	2.67E+02	S	-	4.45E+00	M	_
In-119	1.50E+02	S	_	2.40E+00	M	2
In-119m	1.08E+03	S		1.80E+01	<u>M</u>	1000 C
In-120	4.44E+01	S	_	4./3E+01	5	_
In-120m	3.08E+00	S	-	4.62E+01	5	
In-121	2.80E+01	S	_	2.31E+01	5	_
In-121	1.98E+02	s		2.31E+01	5	
In-122	1.00E+01	S	_	1.50E+00	5	_
In-122m	1.50E+00	S	_	1.03E+01	5	
In-123	5.97E+00	S		0.1/E+00	5	
In-123m	4.80E+01	S	_	4.74E+01	5	_
In-124	3.20E+00	S		3.12E+00	5	
In-125	2.33E+00	S	3 	2.30E+00	5	
In-125m	1.20E+01	S		1.22E+01	5	
In-120	1.53E+00	S		1.53E+00	5	_
In-127	2.00000	S		1.09E+00	5	
In-12/m	3.04E+00	S		3.07E+00	5	
In-128	3.70E+00	S	_	6.40E-01	<u> </u>	
In-129	5.00E-01	S		0.10E-01	5	
In-130	2.00E-01	s		2.90E-01	<u> </u>	
In 131	1.205-01	s		2.000 01	5	
In-132	1.202-01	s	_	1.65E+02	MS	_
In-134	7.75E-02	5	_	1.00E+02	MS	_
Sn-112	0.00E+00		_	0.00E+00	安定	_
Sn-113	9.95E+06		0	1 15E+02		0
Sn-113m	2.00E+01	<u> </u>	<u> </u>	2 14E+01	M	
Sn-114	0.00E+00	安定	13 <u></u> 0	0.00E+00	安定	1 <u></u> 11
Sn-115	0.00E+00			0.00E+00		—
Sn-116	0.00E+00		_	0.00E+00	<u></u>	_
Sn-117	0.00E+00		_	0.00E+00	安定	—
Sn-117m	1.21E+06	s	_	1.36E+01	 D	_
Sn-118	0.00E+00	安定	-	0.00E+00	安定	-
Sn-119	0.00E+00	安定		0.00E+00	安定	-
Sn-119m	2.12E+07	s	0	2.93E+02	D	0
Sn-120	0.00E+00	安定	_	0.00E+00	安定	Ě
Sn-121	9.65E+04	s	-	2.70E+01	H	_
Sn-121m	1.58E+09	S	0	4.39E+01	Y	0
Sn-122	0.00E+00	安定	_	0.00E+00	安定	<u> </u>
Sn-123	1.12E+07	s	0	1.29E+02	D	0
Sn-123m	2.41E+03	S	-	4.01E+01	М	-
Sn-124	0.00E+00	安定		0.00E+00	安定	0 <u>0000</u> 00
Sn-125	8.33E+05	s	_	9.64E+00	D	-
Sn-125m	5.71E+02	s	-	9.52E+00	М	—
Sn-126	3.16E+12	S	0	1.98E+05	Y	0
Sn-127	7.56E+03	s	_	2.10E+00	Н	_
Sn-127m	2.48E+02	S	-	4.13E+00	М	—
Sn-128	3.54E+03	s	8 8	5.91E+01	М	3

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(13/23)</u>

177			190			
	ORIGEN2/I	DECAY.LIB	半津田	JEN	NDL/IND-2	012
核種	半減期	単位	午減期 >30日	半減期	単位	干減期 →30日
Sn-129	4.50E+02	S	-	2.23E+00	М	
Sn-129m	1.50E+02	S	_	6.90E+00	М	—
Sn-130	2.23E+02	S	-	3.72E+00	М	
Sn-131	6.30E+01	S		5.60E+01	S	
Sn-132	4.00E+01	S		3.97E+01	S	_
Sn-133	1.47E+00	S	_	1.45E+00	S	_
Sn-134	8.45E-01	S	-	1.05E+00	S	· —
Sn-135	2.91E-01	S		5.30E+02	MS	_
Sn-136	4.13E-01	s		2.50E+02	MS	-
Sb-121	0.00E+00	安定		0.00E+00	安定	_
Sb-122	2.33E+05	S	_	2.72E+00	D	
Sb-122m	2.52E+02	S	1	5.30E-01	MS	1
Sb-123	0.00E+00	安定		0.00E+00	安定	
Sb-124	5.20E+06	S	0	6.02E+01	D	0
Sb-124m	9.30E+01	S	-	9.30E+01	S	-
Sb-125	8.74E+07	S	0	2.76E+00	Y	0
Sb-126	1.07E+06	S	_	1.24E+01	D	_
Sb-126m	1.14E+03	S		1.92E+01	<u>M</u>	
Sb-127	3.33E+05	S		3.85E+00	<u>D</u>	
Sb-128	3.24E+04	S	_	9.01E+00	н	
Sb-128m	6.24E+02	S		4.405.00		
Sb-129	1.56E+04	S		4.40E+00	H	
Sb-130	2.40E+03	S		3.95E+01	M	
Sb-130m	3.78E+02	S	_	6.30E+00	M	_
SD-131	1.38E+03	S		2.30E+01	M	
SD-132	1.08E+02	S		2.79E+00	M	10
SD-132m	2.32E+02	S		2 505+00	M	
SD-133	1.44E+02	S		2.30E+00	<u>IVI</u>	
Sb-134	1.075+01	s		7.60E-01	3	
Sb-134m	1.07E+01	s		1.695+00	2	
Sb-136	2.31E-01	5		9.23E-01	5	
Sb-137	2.84E-01	<u>с</u>	_	5.25L 01	5	_
Sb-138	1.30E-01	<u> </u>				_
Sb-139	1.00E 01	5	_			_
Te-120	0.00F+00	安定	_	0.00F+00	安定	_
Te-121	147E+06	s	_	1.92E+01	 D	_
Te-121m	1.33E+07	s	0	1.54E+02	D	0
Te-122	0.00E+00	安定	_	0.00E+00	安定	_
Te-123	3.16E+20	s	0	9.20E+16	Y	0
Te-123m	1.03E+07	s	Õ	1.19E+02	D	Ō
Te-124	0.00E+00	安定		0.00E+00	安定	_
Te-125	0.00E+00	安定	-	0.00E+00	安定	
Te-125m	5.01E+06	S	0	5.74E+01	D	0
Te-126	0.00E+00	安定	1 <u></u>	0.00E+00	安定	1 <u>01</u>
Te-127	3.37E+04	s	-	9.35E+00	Н	· — ·
Te-127m	9.42E+06	S	0	1.09E+02	D	0
Te-128	0.00E+00	安定	O	7.70E+24	Y	0
Te-129	4.18E+03	S		6.96E+01	М	-
Te-129m	2.90E+06	S	0	3.36E+01	D	0
Te-130	0.00E+00	安定	O	2.70E+21	Y	0
Te-131	1.50E+03	S		2.50E+01	М	
Te-131m	1.08E+05	S		3.33E+01	Н	19 1
Te-132	2.82E+05	S		3.20E+00	D	-
Te-133	7.47E+02	S	1.000	1.25E+01	М	1.000
Te-133m	3.32E+03	S	-	5.54E+01	М	-
Te-134	2.51E+03	S	-	4.18E+01	М	-
Te-135	1.92E+01	S	<u> </u>	1.90E+01	S	—

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(14/23)</u>

177				190		
<u> </u>	ORIGEN2/L	DECAY.LIB		JEN	IDL/TND-2	012
核種	半減期	単位	半減期 >30日	半減期	単位	≠減期 >30日
Te-136	2.10E+01	s	-	1.76E+01	S	-
Te-137	3.50E+00	S	_	2.49E+00	S	
Te-138	1.64E+00	S	0 .	1.40E+00	S	3 . 7 6
Te-139	4.24E-01	S	—			—
Te-140	7.52E-01	S	-			—
Te-141	2.36E-01	S	2			
Te-142	4.91E-01	S	_			10
I-125	5.97E+01	d	0	5.94E+01	D	0
I-126	1.13E+06	S	_	1.29E+01	D	:
I-127	0.00E+00	安定	18 721	0.00E+00	安定	10-10
I-128	1.50E+03	S		2.50E+01	M	
I-129	4.95E+14	S	0	1.57E+07	Y	0
I-130	4.45E+04	S		1.24E+01	H	
I-130m	5.40E+02	S	_	8.84E+00	М	_
I-131	6.95E+05	S	_	8.03E+00	D	
I-132	8.28E+03	S	_	2.30E+00	H	_
I-133	7.49E+04	S	<u></u>	2.08E+01	н	
I-133m	9.00E+00	S		9.00E+00	S	
1-134	3.16E+03	S		5.25E+01	M	_
I-134m	2.22E+02	S	-	3.52E+00	<u>M</u>	
1-135	2.38E+04	S	_	6.58E+00	н	
1-136	8.30E+01	S	_	8.34E+01	S	_
I-136m	4.60E+01	S		4.69E+01	S	·
1-137	2.46E+01	S		2.45E+01	S	
1-138	6.40E+00	S	_	6.41E+00	5	_
1-139	2.40E+00	S		2.28E+00	5	
1-140	8.60E-01	S		8.60E-01	5	0-a
1-141	4.00E-01	S		4.30E-01	5	
1-142	1.96E-01	S		2.00E-01	5	
I-143	3.28E-01	<u>s</u>				
1-144	1.33E-01	<u>s</u>				
Xo=124	0.00E+00		_	0.005+00	安定	_
Xe-124	1 70E+01	<u> </u>	_	1.69E+01		_
Xe-125m	5 70E+01			5.69E+01	8	
Xe-126	0.00E+00	。	_	0.00E+00	安定	_
Xe-127	315E+06	~~~	0	3.64E+01		0
Xe-127m	7.00E+01	<u>s</u>	Ĕ	6.92E+01	S	<u> </u>
Xe-128	0.00F+00	安定	_	0.00E+00	安定	-
Xe-129	0.00F+00	安定	-	0.00F+00	安定	.
Xe-129m	6.91E+05	s	-	8.88E+00	D	_
Xe-130	0.00E+00	安定		0.00E+00	安定	-
Xe-131	0.00E+00	安定	_	0.00E+00	安定	-
Xe-131m	1.03E+06	s		1.18E+01	D	6 - 1
Xe-132	0.00E+00	安定	_	0.00E+00	安定	9 <u>—6</u> 4
Xe-133	4.53E+05	S		5.24E+00	D	-
Xe-133m	1.89E+05	s		2.19E+00	D	
Xe-134	0.00E+00	安定	23 <u>-</u>	0.00E+00	安定	3-0
Xe-134m	2.90E-01	S	<u></u>	2.90E+02	MS	-
Xe-135	3.27E+04	S		9.14E+00	Н	2
Xe-135m	9.17E+02	S	-	1.53E+01	М	N1
Xe-136	0.00E+00	安定	0	9.30E+19	Y	0
Xe-137	2.30E+02	S	-	3.82E+00	М	
Xe-138	8.50E+02	s	-	1.41E+01	М	—
Xe-139	3.95E+01	S	_	3.97E+01	S	8 <u>—</u> 8
Xe-140	1.36E+01	S	2 	1.36E+01	S	
Xe-141	1.72E+00	S	N====	1.73E+00	S	1.
Xe-142	1.22E+00	S	—	1.22E+00	S	—

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(15/23)</u>

177				190		
	ORIGEN2/	DECAY.LIB		JEN	DL/TND-2	012
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日
Xe-143	3.00E-01	S	-	3.00E-01	S	-
Xe-144	1.00E+00	s	—	3.88E+02	MS	_
Xe-145	9.00E-01	s	-	1.88E+02	MS	—
Xe-146	9.37E-01	S		1.46E+02	MS	
Xe-147	2.64E-01	S	-	1.00E+02	MS	—
Cs-131	9.70E+00	d		9.69E+00	D	(1
Cs-132	5.59E+05	S		6.48E+00	D	-
Cs-133	0.00E+00	安定	_	0.00E+00	安定	
Cs-134	6.51E+07	S	0	2.07E+00	Y	0
Cs-134m	1.04E+04	s	_	2.91E+00	н	_
Cs-135	7.26E+13	S	0	2.30E+06	Y	0
Cs-135m	5.30E+01	m		5.30E+01	М	-
Cs-136	1.13E+06	S	_	1.32E+01	D	_
Cs-137	9.47E+08	S	0	3.01E+01	Y	0
Cs-138	1.93E+03	S	_	3.34E+01	M	_
Cs-138m	1.74E+02	S	-	2.91E+00	M	-
Cs-139	5.64E+02	S	-	9.27E+00	M	-
Cs-140	6.38E+01	S		6.37E+01	S	_
Cs-141	2.50E+01	S	<u> </u>	2.48E+01	S	_
Cs-142	1.70E+00	S	1 -	1.68E+00	S	
Cs-143	1.70E+00	S	_	1.79E+00	S	-
Cs-144	1.02E+00	S		9.94E-01	S	-
Cs-145	5.60E-01	S		5.87E-01	S	
Cs-146	1.90E-01	S	-	3.21E-01	S	-
Cs-147	5.58E-01	S		2.35E-01	S	_
Cs-148	2.02E-01	S		1.46E+02	MS	_
Cs-149	2.78E-01	S				-
Cs-150	1.24E-01	s	_			
Ba-130	0.00E+00	安定	_	0.00E+00	女正	_
Ba-131	1.02E+06	S		1.15E+01	D	_
Ba-131m	1.50E+01	 		1.46E+01	M	19 11,
Ba-132	0.00E+00	安定		0.00E+00	安定	
Ba-133	3.39E+08	S	0	1.05E+01	Y	0
Ba-133m	1.40E+05	s rener		3.89E+01		_
Ba-134	0.00E+00			0.00E+00		
Ba-135	0.00E+00	女疋		0.00E+00	女正	_
Ba-135m	1.03E+05	s rene	5. 	2.8/E+01	H The set	(1
Ba-130	0.00E+00	女正		0.00E+00	<u></u>	
Ba-130m	3.08E-01			3.08E-01		
Ba-137	1.52E+02	又正		2.55E+00	<u></u>	
Da-13/m Da-120	1.53E+02			2.55E+00		
Ba-130	1.00E+00	<u></u>		0.00E+00	<u></u>	
Ba-140	1.11E+06	5	_	1.29E+01		_
Ba-140	1.10E+03	5		1.20E+01	M	_
Ba-141	6.42E+02	5	<u> </u>	1.05E+01	M	1 <u>-1</u> -
Ba-143	1.36E+01	5		1.00E+01	8	1 <u></u> 1
Ba-144	1.10E+01		-	1.15E+01	5	_
Ba-145	6 20E+00	5		4.31E+00	<u> </u>	_
Ba-146	2 20E+00	5 C		2.22E+00	S	_
Ba-147	2.23E+00		_	8.93E-01	S	_
Ba-148	5.90E+00	5	-	6.12E-01	S	_
Ba-149	9.18E-01	s	_	3.44E-01	S	-
Ba-150	1.80E+00	s	_	3.00F-01	S	_
Ba-151	4.37E-01	s	_		-	-
Ba-152	7.55E-01	s	_			_
La-137	1.89E+12	s	0	6.00E+04	Y	0
La-138	4.26E+18	S	Õ	1.02E+11	Y	Õ

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(16/23)</u>

177			190			
	ORIGEN2/	DECAY,LIB		JEN	DL/TND-2	012
核種	半減期	単位	半減期	半減期	単位	半減期
La-139	0.00F+00	安定	-	0.00F+00	安定	<u></u>
La-140	145E+05	~~~	_	1.68E+00	 D	
$L_{a} = 141$	1.42E+04	5	_	3.92E+00	<u> </u>	_
La-142	5 56E+03	6	_	911E+01	M	_
La 142	8 40E+02		-	1.42E+01	M	
La 140	4.00E+01	3		4.08E+01	8	_
La 144	2.000-01	5	_	2.495+01		
La 145	2.30E+01	5	_	6.27E+00		
La 140	1.00E+01	5	_	4.02E+00	<u> </u>	_
La 147	1.30E+00	5		1.26E+00	<u> </u>	
La-149	2.86E+00	5	_	1.05E+00	8	_
La-150	649E-01	5	_	5 10E-01	<u> </u>	_
La-151	954E-01	 		0.102 01		_
La-152	3.09E-01	5	_			_
La-153	4 37E-01	5	_			_
La-154	1.75E-01	5	_		<u></u>	-
La-155	2 22E-01	5			2	
Ce-136	0.00E+00	安定	_	0.00E+00	安定	-
Ce-137	324E+04	<u> </u>	-	9.00E+00	<u> </u>	-
Ce-137m	1 24E+05	5	311	3.44E+01	<u> </u>	_
Ce-138	0.00E+00	。 		0.00E+00		
Ce-139	1 19E+07		0	1 38E+02		0
Ce-139m	5.62E+01	5	<u> </u>	548E+01	<u>s</u>	
Ce-140	0.00E+00	安定		0.00E+00		
Ce-141	2.81E+06	<u> </u>	0	3 25E+01	<u> </u>	0
Ce-142	2.01E+00	5	- ŏ	5.00E+16	<u>v</u>	- ŏ
Ce-143	1 19E+05	5	<u> </u>	3 30E+01	<u>н</u>	<u> </u>
Ce-144	246E+07	5	0	2.85E+02		0
Ce-145	1.80E+02	5	<u> </u>	3.01E+00	M	<u> </u>
Ce-146	8.52E+02	5	_	1 35E+01	M	
Ce-147	7.00E+01	<u> </u>		5.64E+01	S	
Ce-148	4 30E+01	S	_	5.60E+01	S	
Ce-149	1.00E+00	S	_	5.30E+00	S	
Ce-150	1.00E+00	<u> </u>	_	4 00E+00	S	_
Ce-151	1.00E+00	S	-	1.76E+00	S	-
Ce-152	140E+01	<u> </u>	_	140E+00	S	_
Ce-153	173E+00	5	-	1.102.00		
Ce-154	3.59E+00	s	-			
Ce-155	7.13E-01	s	-		55 - 55	-
Ce-156	1.16E+00	s	-			
Ce-157	3.62E-01	s	-		î î	
Pr-139	4.40E+00	h	-	4.41E+00	Н	
Pr-140	3.39E+00	m	-	3.39E+00	M	-
Pr-141	0.00E+00	安定	_	0.00E+00	安定	-
Pr-142	6.89E+04	<u> </u>	-	1.91E+01	<u> </u>	-
Pr-142m	8.76E+02	s	-	1.46E+01	M	-
Pr-143	1.17E+06	S	-	1.36E+01	D	-
Pr-144	1.04E+03	s	-	1.73E+01	M	<u> </u>
Pr-144m	4.32E+02	s	_	7.20E+00	M	-
Pr-145	2.15E+04	S	-	5,98E+00	H	-
Pr-146	1.45E+03	s	_	2.42E+01	M	_
Pr-147	7.20E+02	S	-	1.34E+01	M	
Pr-148	1.38E+02	s	-	2.29E+00	M	-
Pr-149	1.38E+02	s	-	2.26E+00	M	-
Pr-150	1.24E+01	s	-	6.19E+00	S	-
Pr-151	4.00E+00	S	-	1.89E+01	S	-
Pr-152	8.32E+00	S	-	3.63E+00	S	- 1
Pr-153	7.74E+00	S	-	4.28E+00	S	<u> </u>
		-			-	

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(17/23)</u>

177			190			
	ORIGEN2/D	DECAY.LIB		JEN	IDL/TND-2	012
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日
Pr-154	1.31E+00	s		2.30E+00	S	
Pr-155	1.89E+00	S				_
Pr-156	5.10E-01	S				_
Pr-157	6.78E-01	S	-			-
Pr-158	2.63E-01	S				
Pr-159	3.14E-01	S				
Nd-141	2.50E+00	<u>h</u>		2.49E+00	<u>H</u>	-
Nd-142	0.00E+00	<u></u>		0.00E+00		-
Nd-143	0.00E+00	女正		0.00E+00		
Nd-144	6.62E+22	s re	0	2.29E+15	Y	
Nd-145	0.00E+00	<u></u> 安安		0.00E+00	<u></u>	
Nd-140	0.000000	<u></u>		1.10E+01		
Nd-147	9.50E+05			0.005+00		
Nd-140	6.22E+02	<u></u>		1.72E+00		
Nd-149	0.00E+00	。 安宁	0	1.73E+00	<u>н</u> У	0
Nd-151	7.44E+02	<u>XE</u>		1.10E+19	M	<u> </u>
Nd-152	6 90E+02	<u> </u>		1.24E+01	M	
Nd-152	6 75E+01	5	-	316E+01	S	_
Nd-154	4 00E+01	5		2.59E+01	S	
Nd-155	2.61E+01	s		8 90F+00	S	
Nd-156	5.85E+01	s		549E+00	S	_
Nd-157	4.15E+00	s	_	0.102 00		_
Nd-158	7.89E+00	s	<u>1.11</u>		-	·
Nd-159	1.41E+00	S	-			-
Nd-160	2.12E+00	S	-			-
Nd-161	5.56E-01	S	-			-
Pm-145	5.59E+08	S	0	1.77E+01	Y	0
Pm-146	5.50E+00	У	0	5.53E+00	Y	0
Pm-147	8.28E+07	s	0	2.62E+00	Y	0
Pm-148	4.64E+05	s		5.37E+00	D	<u> </u>
Pm-148m	3.57E+06	S	0	4.13E+01	D	0
Pm-149	1.91E+05	S	-	5.31E+01	н	-
Pm-150	9.65E+03	S		2.68E+00	Н	
Pm-151	1.02E+05	S	<u></u>	2.84E+01	н	_
Pm-152	2.46E+02	S		4.12E+00	м	-
Pm-152m	4.50E+02	S		7.52E+00	м	
Pm-153	3.24E+02	S		5.25E+00	M	-
Pm-154	1.68E+02	S		2.68E+00	M	_
Pm-154m	1.08E+02	S				_
Pm-155	3.66E+01	S		4.15E+01	S	-
Pm-156	1.31E+01	S		2.67E+01	S	
Pm-157	6.80E+01	S		1.06E+01	S	_
Pm-158	3.80E+00	S	_	4.80E+00	5	
Pm-159	4.23E+00	S	1993	1.4/E+00	5	
Pm-160	9.90E-01	S				
Dm=162	1.19E+00	S				_
Pm-102	4.00E-01	s 安中		0.005+00	中中	
Sm=144	2 0/E+00	又正	-	3.40E+00		-
Sm-146	7.00E+01	S Mu		1.02E+02	v	
Sm-140	3 38E+19	iviy		1.05E+08	v	
Sm-149	2.53E+10	5		7.00E+15	V	
Sm-140	315E+22	0 C	- ŏ	2.00E+15	Y	ŏ
Sm-150	0.00E+00		-	0.00E+00	安定	-
Sm-151	2.84E+00	ׯ °	0	9.00E+01		0
Sm-152	0.00E+00		<u> </u>	0.00E+00	安定	<u> </u>
Sm-153	1.68E+05	°		4.63E+01	<u> </u>	
100	1.002.00	3		1.002.01		

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(18/23)</u>

	17	7		190		
	ORIGENZ/L	JECAT.LIB	半清期	JEN	NDL/IND-2	112 半減期
核種	半減期	単位	→减州 >30日	半減期	単位	→减州 >30日
Sm-154	0.00E+00	安定	-	0.00E+00	安定	—
Sm-155	1.33E+03	S	-	2.23E+01	М	
Sm-156	3.38E+04	s	—	9.40E+00	н	-
Sm-157	4.80E+02	S	—	4.82E+02	S	-
Sm-158	2.64E+03	S	· · · ·	5.30E+00	М	—
Sm-159	1.62E+02	S	-	1.14E+01	S	
Sm-160	3.49E+02	S	-	9.60E+00	S	-
Sm-161	1.29E+01	S	_	4.80E+00	S	—
Sm-162	1.96E+01	S	—	2.40E+00	S	—
Sm-163	2.56E+00	S	_			-
Sm-164	4.25E+00	S	-			-
Sm-165	9.27E-01	S	-		-	-
Eu-149	9.31E+01	d	0	9.31E+01	D	0
Eu-150	3.60E+01	У.	0	3.69E+01	Y	0
Eu-151	0.00E+00	安定	_	0.00E+00	安定	_
Eu-152	4.29E+08	S	0	1.35E+01	Y	0
Eu-152m	3.36E+04	s	-	9.31E+00	Н	_
Eu-153	0.00E+00	安定		0.00E+00	安定	_
Eu-154	2.71E+08	S	0	8.59E+00	Y	0
Eu-155	1.57E+08	S	0	4.75E+00	Y	0
Eu-156	1.31E+06	S		1.52E+01	D	
Eu-157	5.47E+04	S	-	1.52E+01	н	-
Eu-158	2.75E+03	S		4.59E+01	M	
Eu-159	1.09E+03	S	_	1.81E+01	M	_
Eu-160	5.10E+01	S		3.80E+01	S	-
Eu-161	4.21E+01	S	_	2.60E+01	S	_
Eu-162	2.70E+02	S		1.06E+01	S	
Eu-163	1.48E+01	S				-
Eu-164	2.1/E+00	S				-
Eu-165	2.55E+00	S		1.005.14	~	
Gd-152	3.41E+21	S	8	1.08E+14	Y	0
Gd-153	2.09E+07	s 中中	0	2.40E+02		0
Gd-154	0.00E+00	<u></u>		0.00E+00	<u></u> 安定	
	0.00E+00	女正		0.00E+00	<u></u>	
Gd-155m	3.10E-02	s 安安		3.20E+01		
Gd-150	0.00E+00			0.00E+00		
Gd-157	0.00E+00			0.00E+00	<u></u> 安定	
Gd-150	6 70E+04	<u>x</u> e	_	1.85E+01		
Gd-160	0.00E+00		_	0.00E+00		_
Gd-161	2.22E+02			3.66E+00	M	
Gd-162	6.00E+02	0 C	_	840E+00	M	-
Gd-163	9.28E+01	0 C	_	6.80E+01	S	-
Gd-164	1.30E+03		_	4.50E+01	5	-
Gd-165	1.00E+02	8	_	1.03E+01	8	_
Tb-157	473E+09	<u> </u>	0	7.10E+01	<u> </u>	0
Tb-159	0.00E+00	。	<u> </u>	0.00E+00	安定	<u> </u>
Tb-160	6 25E+06	<u> </u>	0	7.23E+01	 D	0
Tb-161	5 98E+05	S	<u> </u>	6.91E+00	D	<u> </u>
Tb-162	4.48E+02	5	_	7.60E+00	M	_
Tb-162m	8.03E+03	s	-	1.002.00		-
Tb-163	1.17E+03	s	-	1.95E+01	М	-
Tb-163m	7.00E+00	m	-			-
Tb-164	1.80E+02	s	_	3.00E+00	М	-
Tb-165	3.28E+01	s	-	2.11E+00	M	-
Dv-156	0.00E+00	安定		0.00E+00	安定	-
Dv-157	2.92E+04	s	—	8.14E+00	H	-
Dy-158	0.00E+00	安定		0.00E+00	安定	-

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(19/23)</u>

	177			190		
	ORIGEN2/I	DECAY.LIB	NK 201 110	JEN	IDL/TND-2	2012
核種	半減期	単位		半減期	単位	千減期 >30日
Dy-159	1.44E+02	d	0	1.44E+02	D	0
Dy-160	0.00E+00	安定		0.00E+00	安定	-
Dy-161	0.00E+00	安定		0.00E+00	安定	, _
Dy-162	0.00E+00	安定	—	0.00E+00	安定	—
Dy-163	0.00E+00	安定	-	0.00E+00	安定	i —
Dy-164	0.00E+00	安定	1 4	0.00E+00	安定	—
Dy-165	8.46E+03	S	<u> </u>	2.33E+00	н	—
Dy-165m	7.54E+01	S		1.26E+00	М	—
Dy-166	2.93E+05	S	_	8.16E+01	Н	. 8
Ho-163	3.30E+01	У	0	4.57E+03	Y	0
Ho-165	0.00E+00	安定	<u> </u>	0.00E+00	安定	1 - 1
Ho-166	9.65E+04	S		2.68E+01	н	-
Ho-166m	3.79E+10	s	0	1.20E+03	Y	0
Er-162	0.00E+00	安定	_	0.00E+00	安定	_
Er-163	7.50E+01	m	-	7.50E+01	М	—
Er-164	0.00E+00	安定		0.00E+00	安定	
Er-165	1.03E+01	h	-	1.04E+01	н	-
Er-166	0.00E+00	安定	<u> </u>	0.00E+00	安定	<u> </u>
Er-167	0.00E+00	安定		0.00E+00	安定	-
Er-167m	2.30E+00	s	—	2.27E+00	S	
Er-168	0.00E+00	安定	<u></u>	0.00E+00	安定	<u> </u>
Er-169	9.40E+00	d		9.39E+00	D	
Er-170	0.00E+00	安定	-	0.00E+00	安定	_
Er-171	2.71E+04	s	-	7.52E+00	H	-
Er-172	4.90E+01	h	<u></u>	4.93E+01	Н	1 <u>-</u> 3
Tm-169	0.00E+00	安定		0.00E+00	安定	-
Tm-170	1.11E+07	s	0	1.29E+02	D	0
Tm-170m	4.10E-06	s	_			
Tm-171	6.06E+07	S	0	1.92E+00	Y	0
Tm-172	6.36E+01	h	_	6.36E+01	Н	_
Tm-173	8.24E+00	h		8.24E+00	Н	
Yb-168	0.00E+00	安定		0.00E+00	安定	<u>a</u> _10
Yb-169	2.77E+06	S	0	3.20E+01	D	0
Yb-170	0.00E+00	安定	_	0.00E+00	安定	_
Yb-171	0.00E+00	安定	-	0.00E+00	安定	-
Yb-172	0.00E+00	安定	_	0.00E+00	安定	-
Yb-173	0.00E+00	安定	-	0.00E+00	安定	<u> </u>
Yb-174	0.00E+00	安定		0.00E+00	安定	_
Yb-175	3.62E+05	S	<u> </u>	4.19E+00	D	_
Yb-175m	6.70E-02	S	_	6.82E+01	MS	_
Yb-176	0.00E+00	安定	_	0.00E+00	安定	
Yb-177	1.90E+00	h	-	1.91E+00	H	-
Lu-175	0.00E+00	安定	_	0.00E+00	安定	_
Lu-176	3.00E+01	Gv	0	3.76E+10	Y	0
Lu-176m	3.69E+00	h	_	3.66E+00	н	
Lu-177	5.80E+05	S	_	6.65E+00	D	<u> </u>
Lu-177m	1.55E+02	d	0	1.60E+02	D	0
Hf-174	0.00E+00	安定	0	2.00E+15	Y	ŏ
Hf-175	7.00E+01	d	0	7.00E+01	D	ŏ
Hf-176	0.00E+00	安定		0.00E+00	安定	Ĕ
Hf-177	0.00E+00	安定	-	0.00F+00	安定	-
Hf-178	0.00E+00	安定	-	0.00E+00		-
Hf-178m	4.00E+00	<u> </u>	_	4.00E+00	S	_
Hf-179	0.00E+00	安定	_	0.00E+00	安定	_
Hf-179m	1.86E+01	e c	_	1.87E+01	S	_
Hf-180	0.005+00	安定	_	0.005+00		-
Hf-180m	5.50E+00	<u> </u>	_	5.500+00	<u></u>	
Hf-191	3.665+06	11	0	4.24E+01		0
101	0.00E+00	5		4.24ETUI	U	
<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(20/23)</u>

				190 JENDI /TND-2012		
	半減期	単位	半減期	半減期	単位	半減期
Hf-182	9.00E+00	My		8 90E+06	v	
Ta-180	1.60E+13		ŏ	815E+00		
Ta-181	0.00E+00			0.00E+00	安定	
Ta-182	9.94E+06	5	0	1.14E+02	 D	0
Ta-182m	1.65E+01	 m	_	2.83E+02	MS	_
Ta-183	5.10E+00	d	<u> </u>	5.10E+00	D	<u></u>
W-180	0.00E+00	安定	_	0.00E+00	安定	
W-181	1.05E+07	s	0	1.21E+02	D	0
W-182	0.00E+00	安定		0.00E+00	安定	
W-183	0.00E+00	安定	0 <u></u> 0 0	0.00E+00	安定	<u></u>
W-183m	5.20E+00	S	-	5.20E+00	S	-
W-184	0.00E+00	安定	<u> </u>	0.00E+00	安定	-
W-185	7.51E+01	d	0	7.51E+01	D	0
W-185m	1.67E+00	m		1.67E+00	М	
W-186	0.00E+00	安定	-	0.00E+00	安定	-
W-187	8.60E+04	S	-	2.37E+01	Н	
W-188	6.00E+06	s	0	6.98E+01	D	0
W-189	1.15E+01	m		1.07E+01	М	-
Re-185	0.00E+00	安定) (0.00E+00	安定	·····).
Re-186	9.06E+01	h		3.72E+00	D	-
Re-187	5.00E+01	Gy	0	4.35E+10	Y	0
Re-188	6.11E+04	S		1.70E+01	н	-
Re-188m	1.87E+01	m		1.86E+01	М	
Re-189	2.43E+01	h	 .	2.43E+01	н	
Os-184	0.00E+00	安定	1	0.00E+00	安定	-
Os-185	9.40E+01	d	0	9.36E+01	D	0
Os-186	0.00E+00	安定	O	2.00E+15	Y	0
Os-187	0.00E+00	安定	—	0.00E+00	安定	_
Os-188	0.00E+00	安定	—	0.00E+00	安定	—
Os-189	0.00E+00	安定		0.00E+00	安定	-
Os-190	0.00E+00	安定	 .	0.00E+00	安定	
Os-190m	9.90E+00	m	<u> </u>	9.90E+00	М	—
Os-191	1.33E+06	S	<u> </u>	1.54E+01	D	-)
Os-191m	1.30E+01	h	—	1.31E+01	н	-
Os-192	0.00E+00	安定	—	0.00E+00	安定	—
Os-193	3.10E+01	h	-	3.01E+01	н	-
Os-194	6.00E+00	У.	0	6.00E+00	Y	0
Ir-191	0.00E+00	安定	-	0.00E+00	安定	-
Ir-192	6.40E+06	S	0	7.38E+01	D	0
Ir-192m	2.41E+02	<u> </u>	0	1.45E+00	M	
Ir-193	0.00E+00	安定	-	0.00E+00	安定	-
Ir-194	6.89E+04	S	-	1.93E+01	н	-
Ir-194m	3.20E-02	S		1./1E+02	D	0
Pt-190	6.00E+02	Gy	0	6.50E+11	<u>Y</u>	0
Pt-191	3.00E+00		· · · · · · · · · · · · · · · · · · ·	2.80E+00		_
Pt-192	0.00E+00	女正		0.00E+00	<u></u>	
Pt-193	5.00E+02	<u>y</u>	0	5.00E+01	<u> </u>	0
Pt-193m	4.30E+00		_	4.33E+00		_
Pt-194	0.00E+00			0.00E+00	<u></u>	
Pt-195	2.71E+05	<u> </u>	— <u> </u>	0.00E+00		
Pt-195m	2.712+03		_	4.01E+00		
D+-107	1.80E+01	<u></u>		1.000000		
Pt-107m	8.00E+01	m	<u> </u>	9.54E+01	M	(14) (14)
Pt-102	0.00E+00	安定	_	0.00E+00	安定	
Pt-100	3.00E+01	<u></u>	_	3.08E+01	<u></u>	_
Pt-100m	1.41E+01	e	_	1.36E+01	8	_
Au-197	0.00E+00	。	_	0.00E+00	安定	
101	0.002.00	21		0.002.00		

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(21/23)</u>

	17 ORIGEN2/		190 IENDI /TND-2012			
	半減期	单位	半減期	半減期	<u>単位</u>	半減期
Au-100	2 705+00		>30日	2 705+00		>30日
Au-198	2.70E+00	<u>a</u>		2.70E+00	D	_
Au-200	2.71E+03	5	_	4.84E+01	M	
Hg=196	0.00E+00	安定	_	0.00E+00	安定	_
Hg 190	6 50E+01	<u>׿</u>	_	6.41E+01		_
Hg-197m	240E+01	h	_	2.38E+01	<u>н</u>	_
Hg-198	0.00E+00	安定	1	0.00E+00	安定	_
Hg-199	0.00E+00			0.00E+00	<u></u>	
Hg-199m	4.30E+01	 m		4.27E+01	M	_
Hg-200	0.00E+00	安定	_	0.00E+00	安定	-
Hg-201	0.00E+00	安定	5(<u>—3</u> 7	0.00E+00	安定	
Hg-202	0.00E+00	安定) — ·	0.00E+00	安定	_
Hg-203	4.03E+06	s	0	4.66E+01	D	0
Hg-204	0.00E+00	安定	1 <u></u>	0.00E+00	安定	_
Hg-205	5.50E+00	m		5.14E+00	М	-
TI-203	0.00E+00	安定	3 	0.00E+00	安定	2 1 - 1 2
TI-204	3.80E+00	У	0	3.78E+00	Y	0
TI-205	0.00E+00	安定	: - <u></u> -	0.00E+00	安定	_
TI-206	4.19E+00	m		4.20E+00	М	_
TI-207	2.86E+02	s		4.77E+00	М	3.
TI-208	1.84E+02	S		3.05E+00	М	_
TI-209	1.32E+02	S	-	2.20E+00	М	-
Pb-204	1.40E+17	У	0	1.40E+17	Y	0
Pb-205	3.00E+01	My	0	1.73E+07	Y	0
Pb-206	0.00E+00	安定		0.00E+00	安定	_
Pb-207	0.00E+00	安定	_	0.00E+00	安定	_
Pb-208	0.00E+00	安定		0.00E+00	安定	· - ·
Pb-209	3.30E+00	h	_	3.25E+00	Н	_
Pb-210	7.04E+08	S	0	2.22E+01	Y	0
Pb-211	2.17E+03	S	(). 	3.61E+01	M	1 .
Pb-212	3.83E+04	S	_	1.06E+01	н	
Pb-214	1.61E+03	s	-	2.68E+01	M	
Bi-208	3.68E+02	ky	0	3.68E+05	Y	<u> </u>
BI-209	0.00E+00	女正	O	1.90E+19	ř	0
BI-210	4.33E+05	S		5.01E+00		
BI-210m	3.00E+00	INIY	<u> </u>	3.04E+00	Y M	0
BI-211 Bi-212	1.20E+02	s		2.14E+00	M	
Bi-213	2.74E+03	5	11	4.56E+01	M	
Bi-214	1 19E+03	5		1.99E+01	M	
Po-210	1.20E+07	5	0	1.38E+02	D	0
Po-211	5.60E-01	s	<u> </u>	516E-01	S	
Po-211m	2.50E+01	s	-	2.52E+01	S	
Po-212	3.00E-07	s	-	2.99E-01	US	-
Po-213	4.20E-06	S		4.20E+00	US	
Po-214	1.64E-04	s	11 <u></u>	1.64E+02	US	_
Po-215	1.78E-03	s		1.78E+00	MS	-
Po-216	1.50E-01	S	2 (.	1.45E-01	S	
Po-218	1.83E+02	S	10 -71	3.10E+00	М	-
At-217	3.23E-02	S	11 <u></u> 1	3.23E+01	MS	_
Rn-218	3.50E-02	S	2 —	3.50E+01	MS	
Rn-219	3.96E+00	S	27	3.96E+00	S	-
Rn-220	5.56E+01	S	-	5.56E+01	S	—
Rn-222	3.30E+05	S	<u> </u>	3.82E+00	D	-
Fr-221	2.88E+02	S		4.90E+00	M	-
Fr-223	1.31E+03	S	-	2.20E+01	M	-
Ra-222	3.80E+01	S	1-2	3.62E+01	S	_
Ra-223	9.88E+05	S) —	1.14E+01	D	-

<u>第1表 ORIGEN2 附属ライブラリより抽出した核種(22/23)</u>

	17 OBICEN2/E		190			
200 200		JECAT.LIB	半減期	JEN	DL/ IND-2	半減期
核種	半減期	単位	+減朔 >30日	半減期	単位	十减州 >30日
Ra-224	3.16E+05	S	_	3.66E+00	D	()
Ra-225	1.28E+06	S	<u> </u>	1.49E+01	D	<u></u>
Ra-226	5.05E+10	S	0	1.60E+03	Y	0
Ra-228	6.70E+00	У	0	5.75E+00	Y	0
Ac-225	8.64E+05	s	_	1.00E+01	D	—
Ac-227	6.87E+08	S	0	2.18E+01	Y	0
Ac-228	2.21E+04	S	-	6.15E+00	Н	—
Th-226	3.10E+01	m		3.06E+01	М	_
Th-227	1.62E+06	s	_	1.87E+01	D	_
Th-228	6.04E+07	S	0	1.91E+00	Y	0
Th-229	2.32E+11	S	0	7.34E+03	Y	0
Th-230	2.43E+12	s	0	7.54E+04	Y	0
Th-231	9.19E+04	S	_	2.55E+01	Н	
Th-232	4.43E+17	S	0	1.41E+10	Y	0
Th-233	2.21E+01	m	, <u> </u>	2.23E+01	М	-
Th-234	2.08E+06	S	-	2.41E+01	D	-
Pa-231	1.03E+12	S	0	3.28E+04	Y	0
Pa-232	1.13E+05	S		1.32E+00	D	
Pa-233	2.33E+06	S	-	2.70E+01	D	
Pa-234	2.41E+04	S	-	6.70E+00	Н	
Pa-234m	7.02E+01	S	-	1.16E+00	М	
Pa-235	2.41E+01	m	-	2.41E+01	М	-
U-230	2.08E+01	d	1 	2.08E+01	D	1.00
U-231	3.63E+05	S	<u></u>	4.20E+00	D	
U-232	2.27E+09	S	0	6.89E+01	Y	0
U-233	5.00E+12	S	0	1.59E+05	Y	0
U-234	7.72E+12	S	0	2.46E+05	Y	0
U-235	2.22E+16	S	0	7.04E+08	Y	0
U-236	7.39E+14	S	0	2.34E+07	Y	0
U-237	5.83E+05	S	_	6.75E+00	D	-
U-238	1.41E+17	S	0	4.47E+09	Y	0
U-239	1.41E+03	S		2.35E+01	M	_
U-240	5.08E+04	S		1.41E+01	Н	
U-241	1.00E+00	S	_		_	_
Np-235	3.42E+07	S	0	3.96E+02	D	0
Np-236	3.63E+12	S	0	1.54E+05	Y	0
Np-236m	8.10E+04	S	-	0.115.00		-
Np-237	6.75E+13	S	0	2.14E+06	Y	0
Np-238	1.83E+05	S		2.12E+00	D	_
Np-239	2.04E+05	S		2.36E+00	<u> </u>	
Np-240	3.90E+03	S		6.19E+01	M	
Np-240m	4.44E+02	S		1.005.01		
Np-241	1.60E+01	m	-	1.39E+01	M	-
Pu-236	9.00E+07	s	0	2.86E+00	Ŷ	<u> </u>
Pu-237	4.56E+01	d		4.52E+01	D	<u> </u>
Pu-238	Z.77E+09	S		8.77E+01	ř V	
Pu-239	7.09E+11	S		2.41E+04	ř V	
Pu-240	2.00E+11	S		0.00E+03	ř.	
Pu=241	4.04E+08	S		1.43E+01	Y V	
Pu-242	1.22E+13	S	0	3.74E+05	1 11	0
Pu-243	2.61E+1E	S	-	4.90E+00		-
Du-244	1.065+01	5		1.055+01	1 U	
Du-240	1.000001	<u>ا</u> ر ام		1.095+01		
Am-220	1.09E+01	<u>a</u>		1.000001	U	
Am-240	1.20E+0F	S		5.095+01		
Am-240	1.03E+00	5	0	1.0000-01		
Am=241	5.77E+04	S	0	4.53E+02	1 L	
Am-242	0.77E+04	S		1.00E+01	Н	

<u> 用 1 表 −0RTGEN2</u> 附属フイフラリより抽出した核種(2 3 / 2 3)
--

	17	7	190			
	ORIGEN2/I	DECAY.LIB	JENDL/TND-2012			
核種	半減期	単位	半減期 >30日	半減期	単位	半減期 >30日
Am-242m	4.80E+09	s	0	1.41E+02	Y	0
Am-243	2.33E+11	S	0	7.37E+03	Y	0
Am-244	1.01E+01	h	_	1.01E+01	н	-
Am-244m	2.60E+01	m	1	2.60E+01	М	
Am-245	2.07E+00	h	-	2.05E+00	Н	—
Am-246	2.50E+01	m	_	3.90E+01	М	_
Cm-241	3.60E+01	d	0	3.28E+01	D	0
Cm-242	1.41E+07	s	0	1.63E+02	D	0
Cm-243	8.99E+08	s	0	2.91E+01	Y	0
Cm-244	5.72E+08	S	0	1.81E+01	Y	0
Cm-245	2.68E+11	s	0	8.50E+03	Y	0
Cm-246	1.49E+11	s	0	4.76E+03	Y	0
Cm-247	4.92E+14	s	0	1.56E+07	Y	0
Cm-248	1.07E+13	s	0	3.48E+05	Y	0
Cm-249	3.85E+03	s	—	6.42E+01	М	—
Cm-250	1.74E+01	ky	0	9.70E+03	Y	0
Cm-251	1.00E+00	S	—	1.68E+01	М	—
Bk-249	2.77E+07	s	0	3.20E+02	D	0
Bk-250	1.16E+04	S	-	3.21E+00	Н	-
Bk-251	5.70E+01	m	_	5.56E+01	М	
Cf-249	1.11E+10	S	0	3.51E+02	Y	0
Cf-250	4.13E+08	S	0	1.31E+01	Y	0
Cf-251	2.83E+10	s	0	8.98E+02	Y	0
Cf-252	8.33E+07	S	0	2.65E+00	Y	0
Cf-253	1.54E+06	S	— — ·	1.78E+01	D	—
Cf-254	6.05E+01	d	0	6.05E+01	D	0
Cf-255	1.50E+00	h	-	8.50E+01	М	—
Es-253	2.05E+01	d		2.05E+01	D	
Es-254	2.76E+02	d	0	2.76E+02	D	0
Es-254m	3.93E+01	h		3.93E+01	Н	
Es-255	3.90E+01	d	0	3.98E+01	D	0

「指摘事項管理表」番号12

第2表 44 核種の生成可能性等の確認結果(1/3)

	核種	半減期(年) ¹	確認結果
1	Na-22	2.60×10 °	生成量が少ない ²
2	Ar-37	9.60 × 10 ⁻²	希ガス核種 3
3	Ar-39	2.69 × 10 ²	希ガス核種 3
4	Ar - 42	3.30 × 10 ⁻¹	希ガス核種 3
5	Ca-48	6.00×10 ¹⁸	生成されない 4
6	V - 49	9.04 × 10 ⁻¹	生成量が少ない 2
7	V - 50	4.00 × 10 ¹⁶	生成量が少ない ⁵
8	Cr-50	1.80×10 ¹⁷	生成されない 4
9	Se-82	8.30×10 ¹⁹	生成されない 4
10	Kr-78	2.00 × 10 ^{2 1}	生成されない 4
11	Kr-81	2.10×10 ⁵	希ガス核種 3
12	Kr-85	1.07 × 10 ⁻¹	希ガス核種 3
13	Zr-96	3.90×10 ¹⁹	生成されない 4
14	N b - 91	1.00 × 10 ⁴	生成量が少ない 2
15	N b - 92	3.47×10 ⁷	生成量が少ない ⁶
16	M o - 100	1.20×10 ¹⁹	生成されない 4
17	Тс-97	2.60 × 10 ⁶	生成量が少ない 7
18	Тс-97m	2.47 × 10 ⁻¹	生成量が少ない ⁸
19	C d - 113	8.04×10 ¹⁵	生成されない 4

38

	核種	半減期(年) 1	確認結果
20	C d - 116	2.90×10 ¹⁹	生成されない 4
21	Те-123	1.00 × 10 ^{1 3}	生成量が少ない 5
22	Те-128	7.70 × 10 ^{2 4}	生成されない 4
23	Те-130	2.70 × 10 ^{2 1}	生成されない ⁴
24	I - 125	1.64 × 10 ⁻¹	希ガス親核種(X e -125)の娘核種 ³
25	X e - 127	9.98 × 10 ⁻²	希ガス核種 3
26	Xe-136	9.30×10 ¹⁹	生成されない 4
27	C e - 142	1.05 × 10 ¹¹	生成量されない 6
28	P m - 146	5.50×10 °	生成量が少ない 8
29	S m - 149	1.00 × 10 ¹⁶	生成されない 6
30	N d - 150	1.10×10 ¹⁹	生成されない ⁴
31	E u - 149	2.55 × 10 ⁻¹	生成量が少ない ⁸
32	E u - 150	3.60 × 10 ¹	生成量が少ない °
33	Hf - 174	2.00 × 10 ^{1 5}	生成されない ⁴
34	Os-185	2.58 × 10 ⁻¹	生成量が少ない 7
35	Os-186	2.00×10 ¹⁵	生成されない 4
36	Ir - 194m	1.72 × 10 ²	生成量が少ない 6
37	Bi-209	1.90×10 ¹⁹	生成されない⁴
38	Np-235	1.09×10 °	生成量が少ない 10
39	Pu - 237	1.25 × 10 ⁻¹	生成量が少ない ¹⁰

第2表 44核種の生成可能性等の確認結果(2/3)

	核種	半減期(年) 1	確認結果
40	C m - 241	9.86 × 10 ⁻²	生成量が少ない 10
41	B k - 249	8.77 × 10 ⁻¹	生成量が少ない 10
42	Cf-254	1.66 × 10 ⁻¹	生成量が少ない 10
43	E s - 254	7.55 × 10 ⁻¹	生成量が少ない 10
44	E s - 255	1.07 × 10 ⁻¹	生成量が少ない 10

第2表 44 核種の生成可能性等の確認結果(3/3)

- 1 太字は,「JAEA-Data/Code 2012-014 Table of Nuclear Data (JENDL/TND-2012)」の半減期である。
- 2 (n,2n)反応で生成するが,高エネルギー中性子による反応であり, 親核種の核分裂中性子に対する反応断面積が1mb以下である。
- 3 希ガス核種であり,廃棄物中に有意に残留することはない。
- 4 ORIGEN2 附属ライブラリでは安定核種であり,生成されない。
- 5 天然放射性核種であり,天然における同位体存在比が1%以下である。
- 6 同位体存在比の高い同一元素があり,相対的に生成量は少ない。
- 7 (n,)反応で生成するが,親核種の同位体存在比が少なく,微量元素に含まれていない。
- 8 核分裂により生成されるが,その収率がCs-137(6.2%)と比較して 10 桁以上低い。
- 9 同一元素から生成されるEu 152 は、(n,)反応で生成し、熱中性 子に対する反応断面積が 10³オーダーで生成量が多く、相対的にEu -150 の生成量は少ない。
- 10 ウランの多重中性子捕獲及び崩壊により生成されるが,通常生成されるPu-239,Pu-240,Pu-241,Pu-242,Am-241,Am-242,

Am - 242m, Cm - 242, Cm - 243, Cm - 244, それらの 崩壊核種で あるU - 235, U - 236, U - 238, Np - 237, Pu - 238, Pu - 239, Pu - 240 及びこれらの核種の崩壊により生成する核種には含まれてい ないため, その生成量は超ウラン核種の中で少ない。

<u>第3表 L3対象物の放射能濃度の推定結果等(1/2)</u>

			CL濃度基準 (Bq/g)			毎日能濃度(の)		
NO	核種	放射能量(Bq)	法令 ^{※1}	IAEA ^{%2}	評価に使用 する値(C)	成射能展度(D) (Bq∕g)	D/C	D/Cが0.0001以上
1	H-3	1.1E+12	100	100	100	7.0E+01	7.0E-01	0
2	Be-10	3.3E+05			0.1	2.1E-05	2.1E-04	0
3	C-14	9.4E+09	1	1	1	5.9E-01	5.9E-01	0
4	Si-32	2.1E+00			0.1	1.3E-10	1.3E-09	
5	S-35	3.6E-09		100	100	2.3E-19	2.3E-21	
6	CI-36	3.8E+10	1	1	1	2.4E+00	2.4E+00	0
7	K-40	3.2E+07	100	10	10	2.0E-03	2.0E-04	0
8	Ga-41	2.8E+09	100	100	100	I./E-01	1.7E-03	0
10	Ca-45	1.3E-01	0.1	100	100	8.2E-12 1.1E-10	8.2E-14	
11	Mn=54	5.0E+03	0.1	0.1	0.1	1.1E-19 3.1E-07	3 1E-06	
12	Fe-55	1.6E+11	1000	1000	1000	9.8E+00	9.8E-03	0
13	Fe-59	1.8E-38	1	1000	1000	1 2E-48	1 2E-48	
14	Co-58	7.9E-23	1	1	1	4.9E-33	4.9E-33	
15	Co-60	1.0E+11	0.1	0.1	0.1	6.6E+00	6.6E+01	0
16	Ni-59	3.5E+08	100	100	100	2.2E-02	2.2E-04	Õ
17	Ni-63	5.5E+10	100	100	100	3.4E+00	3.4E-02	0
18	Zn-65	6.1E+01	0.1	0.1	0.1	3.8E-09	3.8E-08	
19	Se-75	2.5E-09		1	1	1.6E-19	1.6E-19	
20	Se-79	7.8E+03			0.1	4.9E-07	4.9E-06	
21	Rb-87	2.2E+06			0.1	1.4E-04	1.4E-03	0
22	Sr-85	2.6E-28		1	1	1.6E-38	1.6E-38	
23	Sr-89	4.6E-33		1000	1000	2.9E-43	2.9E-46	
24	Sr-90	1.3E+09	1	1	1	8.4E-02	8.4E-02	
25	Y-91	1.3E-27		100	100	8.0E-38	8.0E-40	
20	Zr-93	2.2E+08		10	10	1.4E-02	1.4E-03	0
21	Zr-95	3.8E-22		10	10	2.4E-32	<u>2.4E-32</u>	
20	ND-93m	2.75±06	0.1	10	10	1.0E=02	1.0E=03	
29	ND-94	2.7E+00	0.1	0.1	0.1	7.9E-25	7.9E-35	
31	Mo-93	1.2L 24		10	10	7.6E 33	7.0E 00	
32	Tc-98	1.2E+07		10	01	6.3E-13	6.3E-12	
33	Tc-99	3.9E+05	1	1	0.1	2.4E-05	2.4E-05	
34	Ru-103	3.6E-44		1	1	2.3E-54	2.3E-54	
35	Ru-106	3.5E+03	0.1	0.1	0.1	2.2E-07	2.2E-06	
36	Rh-102	4.2E+00			0.1	2.6E-10	2.6E-09	
37	Pd-107	1.3E+03			0.1	8.0E-08	8.0E-07	
38	Ag-108m	1.4E+07	0.1		0.1	8.5E-04	8.5E-03	0
39	Ag-110m	1.4E+00	0.1	0.1	0.1	9.0E-11	9.0E-10	
40	Cd-109	3.8E+02		1	1	2.4E-08	2.4E-08	-
41	Cd-113m	1.7E+05		(0.1	1.0E-05	1.0E-04	0
42	Cd-115m	1.8E-40		100	100	1.2E-50	1.2E-52	
43	In-114m	2.4E-38		10	10	I.5E-48	1.5E-49	
44	Sp=112	9.2ET00		1	0.1	2.00-10	2.0E-25	
45	Sn-119m	4.5E-03			01	2.0L 23	2.0L 23	
47	Sn-121m	2.8E+04			0.1	1.8E-06	1.8E-05	
48	Sn-123	2.4E-10			0.1	1.5E-20	1.5E-19	
49	Sn-126	8.8E+03			0.1	5.5E-07	5.5E-06	
50	Sb-124	1.7E-28	1	1	1	1.0E-38	1.0E-38	
51	Sb-125	8.4E+05		0.1	0.1	<u>5.</u> 2E-05	5.2E-04	0
52	Te-121m	0.0E+00			0.1	0.0E+00	0.0E+00	
53	Te-123m	2.6E-09	1	1	1	1.6E-19	1.6E-19	
54	Te-125m	2.0E+05		1000	1000	1.3E-05	1.3E-08	
55	Te-127m	2.4E-07		10	10	1.5E-17	1.5E-18	
56	1e-129m	3./E-54		10	10	2.3E-64	2.3E-65	
5/	1-129	1.1E+04	0.01	0.01	0.01	6.7E-07	6./E-05	
58	US-134	1.3E+07	0.1	0.1	0.1	8.2E-04	8.2E-03	
09	05-135	1.1E+04	0.1	100	100	0./E-U/	0./E-U9	
61	Ba-122	7.3E+08	0.1	U.I	0.1	4./E-UZ	4.70-01	
62	La-137	1 2E+04	0.1		0.1	7.5E-07	7.5E-06	
63	La-138	7.0E+02			0.1	4.4F-08	4.4F-07	
64	Ce-139	2.8E-09		1	1	1.8E-19	1.8E-19	
65	Ce-141	1.5E-54		100	100	9.1E-65	9.1E-67	
66	Ce-144	1.6E+02		10	10	1.0E-08	1.0E-09	
67	Nd-144	1.4E+01			0.1	8.6E-10	8.6E-09	
68	Pm-145	5.1E+06			0.1	3.2E-04	3.2E-03	0
69	Pm-147	1.5E+07		1000	1000	9.3E-04	9.3E-07	
70	Pm-148m	6.6E-44			0.1	4.2E-54	4.2E-53	
71	Sm-145	5.7E+00			0.1	3.6E-10	3.6E-09	
72	Sm-146	2.9E-03			0.1	1.8E-13	1.8E-12	
73	Sm-147	1.9E+04			0.1	1.2E-06	1.2E-05	
74	Sm-148	1.9E-01			0.1	1.2E-11	1.2E-10	
75	Sm-151	3.9E+08		1000	1000	2.5E-02	2.5E-05	

<u>第3表 L3対象物の放射能濃度の推定結果等(2/2)</u>

			CL濃度基準 (Bq/g)					
NO	核種	放射能量(Bq)	法令 ^{※1}	IAEA ^{%2}	· 評価に使用 する値(C)	放射能濃度(D) (Bq/g)	D/C	D/Cが0.0001以上
76	Eu-152	4.6E+10	0.1	0.1	0.1	2.9E+00	2.9E+01	0
77	Eu-154	2.1E+09	0.1	0.1	0.1	1.3E-01	1.3E+00	0
78	Eu-155	3.0E+07		1	1	1.9E-03	1.9E-03	0
79	Gd-152	5.9E-01			0.1	3.7E-11	3.7E-10	
80	Gd-153	1.0E+00		10	10	6.5E-11	6.5E-12	
81	Tb-157	9.4E+05			0.1	5.9E-05	5.9E-04	0
82	Tb-160	8.0E-24	1	1	1	5.0E-34	5.0E-34	
83	Dy-159	1.9E-12			0.1	1.2E-22	1.2E-21	
84	Ho-163	2.6E+06			0.1	1.6E-04	1.6E-03	0
85	Ho-166m	2.3E+06		100	100	1.4E-04	1.4E-03	0
00	Tm=170	1.9E-13		100	100	1.2E-23	7.65-00	
07	Vh-160	1.2E+00 E.0E-01		1000	1000	7.0E-00	2.65-70	
00	10-109	1.0E+0.2			0.1	3.0E-71	0.0E-70	
0.9	Lu-177m	1.3E+03			0.1	2.7E_12	2.40 07	
91	Hf-175	9.2E 03			0.1	5.7E 13	5 3E-35	
92	HF-181	1.0E-40		1	0.1	6.3E-51	6.3E-51	
93	Hf-182	4 2E+00		•	01	2.7E-10	2.7E-09	
94	Ta-180	2.6E-02			0.1	1.7E-12	1.7E-11	
95	Ta-182	4.0E+00	0.1	0.1	0.1	2.5E-10	2.5E-09	
96	W-181	2.9E-14	0.1	10	10	1.8E-24	1.8E-25	
97	W-185	1.3E-12		1000	1000	8.1E-23	8.1E-26	
98	W-188	2.8E-27			0.1	1.8E-37	1.8E-36	
99	Re-187	1.2E+01			0.1	7.5E-10	7.5E-09	
100	Os-194	5.2E-06			0.1	3.3E-16	3.3E-15	
101	Ir-192	2.9E+06		1	1	1.8E-04	1.8E-04	0
102	Ir-192m	2.9E+06			0.1	1.8E-04	1.8E-03	0
103	Pt-190	3.7E+01			0.1	2.3E-09	2.3E-08	
104	Pt-193	1.3E+07			0.1	8.0E-04	8.0E-03	0
105	Hg-203	6.8E-47		10	10	4.3E-57	4.3E-58	
106	TI-204	1.8E+06		1	1	1.1E-04	1.1E-04	0
<u>107</u>	Pb-204	<u>8.2E-03</u>			<u>0.1</u>	<u>5.1E-13</u>	<u>5.1E-12</u>	
108	Pb-205	1.5E+01			0.1	9.7E-10	9.7E-09	
109	Pb-210	2.1E+00		1	1	1.3E-10	1.3E-10	
110	Bi-208	9.0E-02			0.1	5.7E-12	5.7E-11	
110	Bi-210m	2.3E+00			0.1	1.4E-10	1.4E-09	
112	Po-210	1.9E+00		I	1	1.2E-10	1.2E-10	
113	Ra-220	5.8E+00		1	1	3.6E-10	3.0E-10	
114	Ra-220	0.0E+00		1	1	1.3E-03	1.0E_00	
116	Th-229	9.5E±05		1	1	5.2E-05	5.2E_05	
117	Th-220	9.4E+02		0.1	01	5.3E 03	5.3E 03	
118	Th-230	5.4E 02		1	1	3.5E-08	3.5E-08	
119	Th-232	8.5E+05		1	1	5.3E-05	5.3E-05	
120	Pa-231	2.6E+02		1	1	1.6E-08	1.6E-08	
121	U-232	1.5E+02	0.1	0.1	0.1	9.2E-09	9.2E-08	
122	U-233	2.8E+05		1	1	1.7E-05	1.7E-05	
123	U-234	1.5E+06	1	1	1	9.2E-05	9.2E-05	
124	U-235	4.9E+04	1	1	1	3.1E-06	3.1E-06	
125	U-236	3.5E+03	10	10	10	2.2E-07	2.2E-08	
126	U-238	1.1E+06	1	1	1	6.7E-05	6.7E-05	
127	Np-236	6.9E-04			0.1	4.3E-14	4.3E-13	
128	Np-237	1.4E+03		1	1	8.7E-08	8.7E-08	
129	Pu-236	4.5E-01		1	1	2.8E-11	2.8E-11	
130	Pu-238	4.6E+06		0.1	0.1	2.9E-04	2.9E-03	<u> </u>
131	Pu-239	1.3E+07	0.1	0.1	0.1	8.4E-04	8.4E-03	<u> </u>
132	Pu-240	1.1E+07		0.1	0.1	/.UE-04	7.0E-03	
133	Pu-241	3.8E+08	10	10		2.4E-02	2.4E-03	
1.04	PU=242	0.00+03		Ų. I	0.1	3.5E-07	3.0E-06	
100	1-u-244	9.0E=00	۲ <u>۱</u>	0.1	0.1	0.0E-10	J.0E-14	<u> </u>
127	Δm-241	2.2E+07 1.2E+05	0.1	0.1	0.1	1.4E-U3 7.9E_06	7.05-05	
120	Δm-942	1.2E+00		0.1	0.1	00 0 1E07	2.0E-00 8.1E-06	
130	Cm-242	9.3E+04		ų, I 1 N	10	5.8E-06	5.1E-00	
140	Cm-243	8 0E+03		1	1	5.0E-07	5 0E-07	
141	Cm-244	2.0E+05		1	1	1.2E-05	1.2E-05	
142	Cm-245	7.3E+00		01	01	4.6F-10	4.6F-09	
143	Cm-246	7.0E+00		0.1	01	4.4F-10	4.4F-09	
144	Cm-247	1.5E-05		0.1	0.1	9.2E-16	9.2E-15	
145	Cm-248	1.1E-04		0.1	0.1	6.7E-15	6.7E-14	
146	Cm-250	2.9E-12			0.1	1.8E-22	1.8E-21	
147	Cf-249	4.3E-04		0.1	0.1	2.7E-14	2.7E-13	
148	Cf-250	2.0E-03		1	1	1.3E-13	<u>1.3E-</u> 13	
149	Cf-251	2.0E-05		0.1	0.1	1.3E-15	1.3E-14	
150	Cf-252	8.8E-05		1	1	5.5E-15	5.5E-15	

※1:「製錬事業者等における工場等において用いた資材その他の物に含まれる放射性物質の放射能濃度についての確認等に関する規則」 ※2:「IAEA SAFETY GUIDE Application of the Concepts of Exclusion, Exemption and Clearance」

	核種	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
<u>1</u>	<u>H - 3</u>	<u>7.2 × 10⁻⁰³</u>	<u>6.7 × 10⁻⁰⁴</u>	<u>6.7 × 10⁻⁰¹</u>	<u>9.1×10⁻⁰¹</u>
2	Be-10	6.2×10 ⁻¹⁰	3.2 × 10 ⁻¹¹	2.3×10 ⁻⁰⁸	7.3×10 ⁻¹⁰
<u>3</u>	<u>C - 14</u>	<u>1.4 × 10⁻⁰³</u>	<u>5.0 × 10⁻⁰³</u>	<u>5.9×10⁻⁰³</u>	2.9 × 10 ⁻⁰³
4	Si-32	4.5 × 10 ⁻¹³	9.4×10 ⁻¹⁴	1.6×10 ⁻¹⁸	6.6×10 ⁻¹⁴
5	S - 35	0.0	9.4 × 10 ⁻²⁴	0.0	4.8×10 ⁻²¹
<u>6</u>	<u>Cl-36</u>	<u>3.4 × 10⁻⁰⁵</u>	<u>7.8×10⁻⁰⁶</u>	<u>1.6×10⁻⁰³</u>	<u>7.1×10⁻⁰⁵</u>
7	K - 40	3.7 × 10 ⁻¹²	5.8 × 10 ⁻¹²	2.3×10 ⁻⁰⁹	4.2×10 ⁻⁰⁵
8	C a - 41	3.7×10 ⁻⁰⁹	1.6×10 ⁻⁰⁸	1.0×10 ⁻⁰⁶	3.7×10 ⁻⁰³
9	Ca-45	0.0	0.0	0.0	1.8×10 ⁻¹³
10	Sc - 46	0.0	0.0	0.0	2.4×10 ⁻²¹
11	Mn - 54	1.6×10 ⁻⁰⁸	9.4×10 ⁻¹⁰	2.3×10 ⁻⁰⁹	3.1×10 ⁻¹⁰
12	Fe-55	5.3×10 ⁻⁰¹	3.0 × 10 ⁻⁰²	7.4×10 ⁻⁰²	1.2×10 ⁻⁰²
13	Fe-59	0.0	0.0	0.0	0.0
14	Со-58	0.0	0.0	0.0	0.0
15	C o - 60	3.4×10 ⁻⁰¹	3.3×10 ⁻⁰¹	1.1×10 ⁻⁰¹	1.1×10 ⁻⁰²
16	Ni-59	1.1×10 ⁻⁰³	5.7×10 ⁻⁰³	1.1×10 ⁻⁰³	9.9×10 ⁻⁰⁶
<u>17</u>	<u>Ni-63</u>	<u>1.3 × 10⁻⁰¹</u>	<u>6.3×10⁻⁰¹</u>	<u>1.2×10⁻⁰¹</u>	<u>1.1×10⁻⁰³</u>
18	Z n - 65	7.1×10 ⁻¹²	7.6×10 ⁻¹³	7.9×10 ⁻¹⁰	1.4×10 ⁻¹¹
19	Se-75	0.0	0.0	0.0	0.0
20	Se-79	3.6×10 ⁻⁰⁹	2.1×10 ⁻⁰⁸	2.0×10 ⁻⁰⁷	7.2×10 ⁻¹⁰
21	R b - 87	9.2 × 10 ⁻¹¹	7.2×10 ⁻¹⁰	5.6×10 ⁻⁰⁷	3.0×10 ⁻⁰⁶
22	Sr - 85	0.0	0.0	0.0	0.0

第4表 放射化の放射性核種組成比(原子炉停止20年後)(1/7)

	核種	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
23	Sr-89	0.0	0.0	0.0	0.0
<u>24</u>	<u>Sr-90</u>	<u>3.3 × 10⁻⁰⁷</u>	<u>3.3×10⁻⁰⁸</u>	<u>2.5 × 10⁻⁰³</u>	<u>6.0×10⁻⁰⁶</u>
25	Y - 91	0.0	0.0	0.0	0.0
26	Zr-93	1.9×10 ⁻⁰⁸	5.3×10 ⁻¹⁰	3.2×10 ⁻⁰⁷	6.0×10 ⁻⁰⁹
27	Zr-95	0.0	0.0	0.0	0.0
28	N b - 93m	1.5×10 ⁻⁰⁸	4.1×10 ⁻¹⁰	2.5×10 ⁻⁰⁷	4.7×10 ⁻⁰⁹
29	N b - 94	1.1×10 ⁻⁰⁷	1.4×10 ⁻⁰⁵	2.7×10 ⁻⁰⁶	1.3×10 ⁻⁰⁶
30	N b - 95	0.0	0.0	0.0	0.0
31	M o - 93	1.5×10 ⁻⁰⁵	5.0×10 ⁻⁰⁶	6.6×10 ⁻⁰⁷	4.8×10 ⁻⁰⁸
32	Тс-98	9.5 × 10 ⁻¹⁸	3.1×10 ⁻¹⁸	0.0	0.0
33	Тс-99	3.5×10 ⁻⁰⁷	1.2×10 ⁻⁰⁷	8.6×10 ⁻⁰⁷	3.1×10 ⁻⁰⁹
34	R u - 103	0.0	0.0	0.0	0.0
35	Ru - 106	3.5 × 10 ⁻¹³	2.2 × 10 ⁻¹³	7.8×10 ⁻¹⁰	1.9×10 ⁻¹²
36	R h - 102	6.2×10 ⁻¹⁶	2.2 × 10 ⁻¹⁷	0.0	2.3 × 10 ⁻¹²
37	P d - 107	4.5×10 ⁻¹³	2.8 × 10 ⁻¹³	1.0×10 ⁻⁰⁹	1.9×10 ⁻¹⁰
38	Ag - 108m	4.4×10 ⁻⁰⁵	2.4×10 ⁻⁰⁵	2.2×10 ⁻⁰⁵	1.5×10 ⁻⁰⁶
39	Ag - 110m	4.8 × 10 ⁻¹²	2.6 × 10 ⁻¹²	0.0	9.8 × 10 ⁻¹⁴
40	C d - 109	7.4×10 ⁻¹¹	4.0 × 10 ⁻¹¹	0.0	5.6 × 10 ⁻¹²
41	C d - 113m	4.1×10 ⁻¹¹	1.2×10 ⁻¹¹	2.3×10 ⁻⁰⁷	5.0×10 ⁻¹⁰
42	C d - 115m	0.0	0.0	0.0	0.0
43	In - 114m	0.0	0.0	0.0	0.0
44	In - 115	2.4 × 10 ⁻²²	4.6 × 10 ⁻²³	1.6×10 ⁻¹⁸	1.2×10 ⁻¹¹

第4表 放射化の放射性核種組成比(原子炉停止20年後)(2/7)

	核種	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
45	S n - 113	0.0	0.0	0.0	0.0
46	S n - 119m	9.8 × 10 ⁻¹⁷	0.0	1.5×10 ⁻²³	0.0
47	S n - 121m	6.1×10 ⁻¹³	2.9×10 ⁻¹³	2.4×10 ⁻⁰⁹	3.3×10 ⁻⁰⁸
48	S n - 123	0.0	0.0	0.0	0.0
49	S n - 126	4.2 × 10 ⁻¹²	1.1×10 ⁻¹²	2.4×10 ⁻⁰⁸	5.6×10 ⁻¹¹
50	S b - 124	0.0	0.0	0.0	0.0
51	S b - 125	8.3×10 ⁻⁰⁹	2.8×10 ⁻¹⁰	4.8×10 ⁻⁰⁷	8.1×10 ⁻⁰⁸
52	Те-121m	0.0	0.0	0.0	0.0
53	Te-123m	0.0	0.0	0.0	0.0
54	Te-125m	2.0×10 ⁻⁰⁹	6.7 × 10 ⁻¹¹	1.2×10 ⁻⁰⁷	2.0×10 ⁻⁰⁸
55	Te-127m	0.0	1.0×10 ⁻²²	0.0	3.2 × 10 ⁻¹⁹
56	Te-129m	0.0	0.0	0.0	0.0
57	I - 129	2.2 × 10 ⁻¹³	5.5×10 ⁻¹⁴	1.4×10 ⁻⁰⁹	1.4×10 ⁻⁰⁸
58	C s - 134	2.4 × 10 ⁻⁰⁷	5.7×10 ⁻⁰⁸	1.2×10 ⁻⁰⁶	1.7×10 ⁻⁰⁵
59	C s - 135	1.4×10 ⁻¹¹	2.4 × 10 ⁻¹²	8.5×10 ⁻⁰⁸	2.0×10 ⁻¹⁰
60	C s - 137	4.0×10 ⁻⁰⁷	6.8×10 ⁻⁰⁸	2.7 × 10 ⁻⁰³	6.4×10 ⁻⁰⁶
61	B a - 133	1.5×10 ⁻⁰⁸	2.3×10 ⁻⁰⁹	2.9×10 ⁻⁰⁷	9.8×10 ⁻⁰⁵
62	La-137	3.5×10 ⁻¹¹	6.8 × 10 ⁻¹²	4.3×10 ⁻⁰⁸	1.5×10 ⁻⁰⁸
63	L a - 138	3.1×10 ⁻¹⁴	9.8 × 10 ⁻¹⁵	1.9×10 ⁻¹⁰	9.4 × 10 ⁻¹⁰
64	C e - 139	0.0	0.0	0.0	0.0
65	C e - 141	0.0	0.0	0.0	0.0
66	C e - 144	2.2×10 ⁻¹⁴	4.3×10 ⁻¹⁵	1.6×10 ⁻¹⁰	4.5 × 10 ⁻¹³

第4表 放射化の放射性核種組成比(原子炉停止20年後)(3/7)

	核種	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
67	N d - 144	1.1×10 ⁻²⁰	1.3 × 10 ⁻²¹	7.7×10 ⁻¹⁷	1.8×10 ⁻¹¹
68	P m - 145	1.7×10 ⁻⁰⁷	4.8×10 ⁻⁰⁸	1.7×10 ⁻⁰⁵	6.6×10 ⁻⁰⁶
69	P m - 147	2.4×10 ⁻⁰⁹	5.0×10 ⁻¹⁰	1.6×10 ⁻⁰⁵	3.5×10 ⁻⁰⁶
70	P m - 148m	0.0	0.0	0.0	0.0
71	S m - 145	2.0 × 10 ⁻¹³	5.4 × 10 ⁻¹⁴	1.7×10 ⁻¹¹	7.4 × 10 ⁻¹²
72	S m - 146	8.9×10 ⁻¹⁷	2.4 × 10 ⁻¹⁷	7.9×10 ⁻¹⁵	2.5×10 ⁻¹⁵
73	S m - 147	2.5 × 10 ⁻¹²	6.8×10 ⁻¹³	3.0×10 ⁻⁰⁸	2.5×10 ⁻⁰⁸
74	S m - 148	2.5 × 10 ⁻¹⁷	6.9×10 ⁻¹⁸	3.0 × 10 ⁻¹³	2.5 × 10 ⁻¹³
75	S m - 151	2.0×10 ⁻⁰⁵	5.5×10 ⁻⁰⁶	1.3×10 ⁻⁰³	5.1×10 ⁻⁰⁴
76	E u - 152	1.4×10 ⁻⁰³	2.1 × 10 ⁻⁰⁴	1.3×10 ⁻⁰²	6.1 × 10 ⁻⁰²
77	E u - 154	1.4×10 ⁻⁰⁴	2.2×10 ⁻⁰⁵	6.8×10 ⁻⁰⁴	2.7 × 10 ⁻⁰³
78	E u - 155	3.1×10 ⁻⁰⁶	5.9×10 ⁻⁰⁷	9.2×10 ⁻⁰⁵	3.6×10 ⁻⁰⁵
79	G d - 152	4.7 × 10 ⁻¹⁶	7.3×10 ⁻¹⁷	3.5 × 10 ⁻¹⁵	7.9×10 ⁻¹³
80	G d - 153	1.6×10 ⁻¹³	2.4 × 10 ⁻¹⁴	0.0	1.3 × 10 ⁻¹²
81	T b - 157	0.0	1.4×10 ⁻⁰⁷	0.0	1.3×10 ⁻⁰⁶
82	T b - 160	0.0	0.0	0.0	0.0
83	Dy - 159	0.0	0.0	0.0	0.0
84	Но-163	0.0	0.0	0.0	3.5×10 ⁻⁰⁶
85	H o - 166m	1.9×10 ⁻⁰⁷	7.0×10 ⁻⁰⁸	2.0×10 ⁻⁰⁵	2.9×10 ⁻⁰⁶
86	T m - 170	0.0	0.0	0.0	0.0
87	T m - 171	3.2 × 10 ⁻¹⁴	2.5 × 10 ⁻¹³	2.6 × 10 ⁻¹²	1.6×10 ⁻⁰⁷
88	Y b - 169	0.0	0.0	0.0	0.0

第4表 放射化の放射性核種組成比(原子炉停止20年後)(4/7)

	核種	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
89	Lu - 176	9.4 × 10 ⁻¹³	2.9×10 ⁻¹²	8.0×10 ⁻⁰⁹	1.8×10 ⁻⁰⁹
90	Lu - 177m	2.1 × 10 ⁻¹⁵	4.3 × 10 ⁻¹⁷	3.3×10 ⁻¹²	9.5×10 ⁻¹⁶
91	H f - 175	0.0	0.0	0.0	0.0
92	H f - 181	0.0	0.0	0.0	0.0
93	Hf-182	2.3×10 ⁻¹⁶	1.8×10 ⁻¹⁵	8.2×10 ⁻¹⁷	4.7×10 ⁻¹⁷
94	Та-180	1.6×10 ⁻¹⁷	9.0 × 10 ⁻¹⁷	6.7×10 ⁻¹⁴	3.5×10 ⁻¹⁴
95	Та-182	0.0	1.6×10 ⁻¹⁵	0.0	0.0
96	W - 181	0.0	0.0	0.0	0.0
97	W - 185	4.3 × 10 ⁻²⁴	0.0	0.0	0.0
98	W - 188	0.0	0.0	0.0	0.0
99	Re-187	2.9×10 ⁻¹¹	6.3×10 ⁻¹¹	2.0×10 ⁻¹¹	4.9×10 ⁻¹²
100	O s - 194	0.0	0.0	0.0	2.4 × 10 ⁻²⁴
101	Ir-192	0.0	2.7 × 10 ⁻¹⁷	0.0	3.8×10 ⁻⁰⁶
102	Ir-192m	0.0	2.7 × 10 ⁻¹⁷	0.0	3.8×10 ⁻⁰⁶
103	Pt-190	0.0	0.0	0.0	5.0 × 10 ⁻¹¹
104	Pt-193	0.0	2.4 × 10 ⁻²⁴	0.0	1.7×10 ⁻⁰⁵
105	Hg - 203	0.0	0.0	0.0	0.0
106	Tl-204	2.0 × 10 ⁻¹⁴	9.8 × 10 ⁻¹⁵	2.4 × 10 ⁻¹²	2.4×10 ⁻⁰⁶
107	P b - 204	6.9×10 ⁻¹⁷	3.4 × 10 ⁻¹⁷	4.3×10 ⁻¹³	1.1×10 ⁻¹⁴
108	P b - 205	1.9×10 ⁻¹¹	9.5 × 10 ⁻¹²	9.8×10 ⁻¹⁰	1.2×10 ⁻¹¹
109	P b - 210	3.2 × 10 ⁻¹⁶	5.9×10 ⁻¹⁶	4.6×10 ⁻¹⁰	2.1 × 10 ⁻¹²
110	Bi-208	1.8×10 ⁻¹⁹	9.5 × 10 ⁻²⁰	0.0	9.9×10 ⁻¹⁴

第4表 放射化の放射性核種組成比(原子炉停止20年後)(5/7)

	核種	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
111	Bi-210m	5.0 × 10 ⁻¹⁸	2.5 × 10 ⁻¹⁸	0.0	3.0 × 10 ⁻¹²
112	P o - 210	2.3 × 10 ⁻¹⁷	6.5×10 ⁻¹⁶	4.6×10 ⁻¹⁰	1.8×10 ⁻¹²
113	R a - 226	1.4 × 10 ⁻¹⁵	1.6×10 ⁻¹⁵	1.2×10 ⁻⁰⁹	5.7 × 10 ⁻¹²
114	R a - 228	4.1×10 ⁻¹¹	3.2×10 ⁻¹⁰	2.5×10 ⁻⁰⁷	1.1×10 ⁻⁰⁶
115	Ас-227	1.9×10 ⁻¹²	1.5×10 ⁻¹¹	6.3×10 ⁻⁰⁹	2.1×10 ⁻¹⁰
116	Th - 228	4.9×10 ⁻¹¹	3.8×10 ⁻¹⁰	2.5×10 ⁻⁰⁷	1.1×10 ⁻⁰⁶
117	T h - 229	1.2×10 ⁻¹¹	9.6×10 ⁻¹¹	6.5×10 ⁻¹⁰	1.3×10 ⁻⁰⁹
118	Th - 230	1.3×10 ⁻¹³	1.1×10 ⁻¹³	1.1×10 ⁻⁰⁷	5.1×10 ⁻¹⁰
119	T h - 232	4.1×10 ⁻¹¹	3.2×10 ⁻¹⁰	2.5×10 ⁻⁰⁷	1.1×10 ⁻⁰⁶
120	Ра-231	2.8 × 10 ⁻¹²	2.2×10 ⁻¹¹	1.2×10 ⁻⁰⁸	3.3×10 ⁻¹⁰
121	U - 232	8.3 × 10 ⁻¹²	6.5×10 ⁻¹¹	1.8×10 ⁻¹⁰	3.1 × 10 ⁻¹²
122	U - 233	3.6×10 ⁻⁰⁹	2.8×10 ⁻⁰⁸	1.9×10 ⁻⁰⁷	3.7×10 ⁻⁰⁷
123	U - 234	2.5×10 ⁻¹⁰	3.1 × 10 ⁻¹¹	2.4×10 ⁻⁰⁴	1.1×10 ⁻⁰⁶
124	U - 235	1.1×10 ⁻¹¹	4.2 × 10 ⁻¹³	1.1×10 ⁻⁰⁵	5.0×10 ⁻⁰⁸
125	U - 236	1.4 × 10 ⁻¹²	5.5×10 ⁻¹⁴	1.1×10 ⁻⁰⁸	2.2×10 ⁻¹¹
126	U - 238	2.5×10 ⁻¹⁰	9.7 × 10 ⁻¹²	2.4×10 ⁻⁰⁴	1.1×10 ⁻⁰⁶
127	Np-236	0.0	0.0	0.0	0.0
128	N p - 237	2.7 × 10 ⁻¹³	1.1×10 ⁻¹⁴	2.1×10 ⁻⁰⁹	4.0 × 10 ⁻¹²
129	Pu - 236	7.6×10 ⁻¹⁸	3.0×10 ⁻¹⁹	4.9×10 ⁻¹⁶	4.0×10 ⁻¹⁹
130	Pu - 238	3.8×10 ⁻¹¹	1.5×10 ⁻¹²	1.9×10 ⁻⁰⁹	1.5×10 ⁻¹²
131	Pu - 239	7.4 × 10 ⁻⁰⁸	2.9×10 ⁻⁰⁹	6.2×10 ⁻⁰⁴	1.1×10 ⁻⁰⁶
132	Pu - 240	4.4×10 ⁻⁰⁹	1.7×10 ⁻¹⁰	3.0×10 ⁻⁰⁷	2.1×10 ⁻¹⁰

第4表 放射化の放射性核種組成比(原子炉停止20年後)(6/7)

	核種	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
133	Pu - 241	9.3×10 ⁻⁰⁹	3.6×10 ⁻¹⁰	5.1 × 10 ⁻⁰⁹	1.6×10 ⁻¹²
134	Pu - 242	5.4 × 10 ⁻¹⁵	2.1 × 10 ⁻¹⁶	1.0×10 ⁻²⁰	1.0×10 ⁻²⁴
135	Pu - 244	0.0	0.0	0.0	0.0
136	A m - 241	8.2×10 ⁻¹⁰	3.2×10 ⁻¹¹	4.5×10 ⁻¹⁰	1.3×10 ⁻¹³
137	A m - 242m	1.6 × 10 ⁻¹²	6.3×10 ⁻¹⁴	0.0	0.0
138	A m - 243	3.5 × 10 ⁻¹⁶	1.4 × 10 ⁻¹⁷	0.0	0.0
139	C m - 242	1.3 × 10 ⁻¹²	5.2×10 ⁻¹⁴	4.2×10 ⁻¹⁴	4.3×10 ⁻¹⁸
140	C m - 243	2.9×10 ⁻¹⁶	4.5×10 ⁻¹⁸	0.0	0.0
141	C m - 244	7.6×10 ⁻²⁰	2.9×10 ⁻²¹	0.0	0.0
142	C m - 245	0.0	0.0	0.0	0.0
143	C m - 246	0.0	0.0	0.0	0.0
144	C m - 247	0.0	0.0	0.0	0.0
145	C m - 248	0.0	0.0	0.0	0.0
146	C m - 250	0.0	0.0	0.0	0.0
147	Cf-249	0.0	0.0	0.0	0.0
148	C f - 250	0.0	0.0	0.0	0.0
149	C f - 251	0.0	0.0	0.0	0.0
150	C f - 252	0.0	0.0	0.0	0.0

第4表 放射化の放射性核種組成比(原子炉停止20年後)(7/7)

拉纤		ᆧᆿᅎᄉᄝ		廃液系金属及び
	↑亥↑里	リス糸玉馬	カスネコンクリート	廃液系コンクリート
<u>1</u>	<u>H - 3</u>	<u>8.5 × 10⁻⁰²</u>	$4.5 \times 10^{-0.2}$	<u>1.6 × 10⁻⁰³</u>
2	Be-10	3.0×10 ⁻⁰⁵	1.6×10 ⁻⁰⁵	1.9×10 ⁻⁰⁷
<u>3</u>	<u>C - 14</u>	<u>1.7 × 10⁻⁰¹</u>	<u>8.9×10⁻⁰²</u>	<u>1.1 × 10⁻⁰³</u>
4	Si-32	1.8×10 ⁻¹⁰	9.3×10 ⁻¹¹	1.1 × 10 ⁻¹²
5	S - 35	1.6×10 ⁻²¹	8.3 × 10 ⁻²²	1.0 × 10 ⁻²³
<u>6</u>	<u>Cl-36</u>	<u>6.0×10⁻⁰⁴</u>	$3.2 \times 10^{-0.4}$	<u>3.8 × 10⁻⁰⁶</u>
7	K - 40	7.6×10 ⁻⁰⁹	4.0×10 ⁻⁰⁹	4.8 × 10 ⁻¹¹
8	C a - 41	1.1×10 ⁻⁰³	5.8×10 ⁻⁰⁴	7.0×10 ⁻⁰⁶
9	Ca-45	8.1×10 ⁻¹⁵	4.3×10 ⁻¹⁵	5.2 × 10 ⁻¹⁷
10	Sc - 46	3.8 × 10 ⁻²³	2.0×10 ⁻²³	2.5 × 10 ⁻²⁵
11	M n - 54	1.0×10 ⁻⁰⁸	5.4×10 ⁻⁰⁹	6.5×10 ⁻¹¹
12	Fe-55	6.8×10 ⁻⁰²	3.6×10 ⁻⁰²	4.3×10 ⁻⁰⁴
13	Fe-59	0.0	0.0	0.0
14	C o - 58	0.0	0.0	0.0
15	C o - 60	1.7×10 ⁻⁰¹	8.9×10 ⁻⁰²	1.1 × 10 ⁻⁰³
16	Ni-59	2.2×10 ⁻⁰³	1.1×10 ⁻⁰³	1.4 × 10 ⁻⁰⁵
<u>17</u>	<u>Ni-63</u>	<u>3.4 × 10⁻⁰¹</u>	<u>1.8 × 10⁻⁰¹</u>	<u>2.1 × 10⁻⁰³</u>
18	Z n - 65	4.4×10 ⁻⁰⁹	2.3×10 ⁻⁰⁹	2.8 × 10 ⁻¹¹
19	Se-75	2.4×10 ⁻¹⁹	1.3×10 ⁻¹⁹	1.5 × 10 ⁻²¹
20	Se-79	4.7×10 ⁻⁰⁷	1.5×10 ⁻⁰⁶	2.6×10 ⁻⁰⁶
21	R b - 87	3.7×10 ⁻¹¹	9.1×10 ⁻¹¹	1.4 × 10 ⁻¹⁰

第5表 汚染の放射性核種組成比(原子炉停止20年後)(1/8)

拉话		ᆧᆿᅎᅀᄅ		廃液系金属及び
	↑亥↑里	リス糸玉馬	カス系コンクリート	廃液系コンクリート
22	Sr-85	0.0	0.0	0.0
23	Sr-89	0.0	0.0	0.0
<u>24</u>	<u>Sr-90</u>	<u>4.2×10⁻⁰²</u>	<u>1.7 × 10⁻⁰¹</u>	<u>2.8 × 10⁻⁰¹</u>
25	Y - 91	0.0	0.0	0.0
26	Zr-93	1.9×10 ⁻⁰²	1.0×10 ⁻⁰²	1.4 × 10 ⁻⁰⁴
27	Zr-95	4.8×10 ⁻³⁵	1.9×10 ⁻³⁴	1.9×10 ⁻³⁴
28	N b - 93m	1.5×10 ⁻⁰²	7.8×10 ⁻⁰³	1.0×10 ⁻⁰⁴
29	Nb - 94	1.5×10 ⁻⁰⁴	7.8×10 ⁻⁰⁵	9.4 × 10 ⁻⁰⁷
30	Nb - 95	1.1×10 ⁻³⁴	4.3×10 ⁻³⁴	4.2 × 10 ⁻³⁴
31	M o - 93	6.7×10 ⁻⁰⁴	3.5×10 ⁻⁰⁴	4.3×10 ⁻⁰⁶
32	Тс-98	8.7 × 10 ⁻¹³	8.7 × 10 ⁻¹³	1.2 × 10 ⁻¹²
33	Тс-99	2.3×10 ⁻⁰⁵	5.7×10 ⁻⁰⁵	9.3×10 ⁻⁰⁵
34	R u - 103	0.0	0.0	0.0
35	Ru - 106	2.9×10 ⁻⁰⁷	1.2×10 ⁻⁰⁶	1.8×10 ⁻⁰⁶
36	R h - 102	2.0×10 ⁻¹⁰	8.0×10 ⁻¹⁰	1.9×10 ⁻⁰⁹
37	P d - 107	8.2×10 ⁻⁰⁸	3.3×10 ⁻⁰⁷	7.1×10 ⁻⁰⁷
38	Ag - 108m	2.8×10 ⁻⁰⁶	1.5×10 ⁻⁰⁶	1.8×10 ⁻⁰⁸
39	Ag - 110m	8.5 × 10 ⁻¹³	2.9×10 ⁻¹²	6.6×10 ⁻¹²
40	C d - 109	3.3×10 ⁻⁰⁸	1.7×10 ⁻⁰⁸	2.1×10 ⁻¹⁰
41	C d - 113m	1.3×10 ⁻⁰⁵	5.2×10 ⁻⁰⁵	9.6×10 ⁻⁰⁵
42	C d - 115m	0.0	0.0	0.0

第5表 汚染の放射性核種組成比(原子炉停止20年後)(2/8)

拉纤		ギュズ会民		廃液系金属及び
		リス系金属	コステコンクリート	廃液系コンクリート
43	In - 114m	0.0	0.0	0.0
44	In - 115	6.6×10 ⁻¹⁷	1.4×10 ⁻¹⁶	1.9×10 ⁻¹⁶
45	S n - 113	0.0	0.0	0.0
46	S n - 119m	3.2×10 ⁻¹³	5.6×10 ⁻¹³	5.5×10 ⁻¹³
47	S n - 121m	3.3×10 ⁻⁰⁷	5.6×10 ⁻⁰⁷	8.9×10 ⁻⁰⁷
48	S n - 123	1.9×10 ⁻²⁰	7.8×10 ⁻²⁰	8.8×10 ⁻²⁰
49	S n - 126	6.4×10 ⁻⁰⁷	2.6×10 ⁻⁰⁶	4.9×10 ⁻⁰⁶
50	S b - 124	0.0	0.0	0.0
51	S b - 125	6.4×10 ⁻⁰⁵	2.6×10 ⁻⁰⁴	4.0×10 ⁻⁰⁴
52	Te-121m	0.0	0.0	0.0
53	Te-123m	2.4×10 ⁻¹⁹	1.3×10 ⁻¹⁹	1.6 × 10 ⁻²¹
54	Te-125m	1.6×10 ⁻⁰⁵	6.3×10 ⁻⁰⁵	9.8×10 ⁻⁰⁵
55	Te-127m	5.8 × 10 ⁻²³	2.3×10 ⁻²²	2.7 × 10 ⁻²²
56	Te-129m	0.0	0.0	0.0
57	I - 129	2.8×10 ⁻⁰⁸	1.2×10 ⁻⁰⁷	2.2×10 ⁻⁰⁷
58	C s - 134	2.7×10 ⁻⁰⁵	1.1×10 ⁻⁰⁴	2.3×10 ⁻⁰⁴
59	C s - 135	7.7×10 ⁻⁰⁷	3.1×10 ⁻⁰⁶	5.6×10 ⁻⁰⁶
60	C s - 137	5.7 × 10 ⁻⁰²	2.3×10 ⁻⁰¹	4.0×10 ⁻⁰¹
61	Ва-133	7.7×10 ⁻⁰⁵	4.1×10 ⁻⁰⁵	4.9×10 ⁻⁰⁷
62	La-137	3.7×10 ⁻⁰⁸	2.0×10 ⁻⁰⁸	2.4×10 ⁻¹⁰
63	La-138	5.2×10 ⁻¹⁵	3.2×10 ⁻¹⁵	9.1 × 10 ⁻¹⁶

第5表 汚染の放射性核種組成比(原子炉停止20年後)(3/8)

拉纤		ᆧᆿᅎᅀᄅ		廃液系金属及び
	1100 1100 1100 1100 1100 1100 1100 110	リス系金属	カス系コンクリート 	廃液系コンクリート
64	C e - 139	2.6×10 ⁻¹⁹	1.4×10 ⁻¹⁹	1.7 × 10 ⁻²¹
65	C e - 141	0.0	0.0	0.0
66	C e - 144	1.3×10 ⁻⁰⁸	5.4 × 10 ⁻⁰⁸	5.8×10 ⁻⁰⁸
67	N d - 144	1.4×10 ⁻¹⁵	5.7 × 10 ⁻¹⁵	1.1×10 ⁻¹⁴
68	P m - 145	1.2×10 ⁻⁰⁵	6.2×10 ⁻⁰⁶	7.5×10 ⁻⁰⁸
69	P m - 147	1.0×10 ⁻⁰³	4.1 × 10 ⁻⁰³	5.6 × 10 ⁻⁰³
70	P m - 148m	0.0	0.0	0.0
71	S m - 145	1.3×10 ⁻¹¹	7.0×10 ⁻¹²	8.5×10 ⁻¹⁴
72	S m - 146	8.1×10 ⁻¹⁴	8.8×10 ⁻¹⁴	1.5 × 10 ⁻¹³
73	S m - 147	9.6×10 ⁻¹²	3.6×10 ⁻¹¹	6.0×10 ⁻¹¹
74	S m - 148	4.2×10 ⁻¹⁷	6.3×10 ⁻¹⁷	1.1×10 ⁻¹⁶
75	S m - 151	6.3×10 ⁻⁰⁴	2.5×10 ⁻⁰³	3.4 × 10 ⁻⁰³
76	E u - 152	2.0×10 ⁻⁰⁴	1.3×10 ⁻⁰⁴	5.2×10 ⁻⁰⁵
77	E u - 154	5.1×10 ⁻⁰⁴	1.2×10 ⁻⁰³	2.6×10 ⁻⁰³
78	E u - 155	1.8×10 ⁻⁰⁴	5.4 × 10 ⁻⁰⁴	8.6×10 ⁻⁰⁴
79	G d - 152	6.0×10 ⁻¹⁷	3.7×10 ⁻¹⁷	1.2×10 ⁻¹⁷
80	G d - 153	1.7×10 ⁻¹⁴	1.8×10 ⁻¹⁴	2.2×10 ⁻¹⁴
81	T b - 157	1.1×10 ⁻⁰⁶	6.0×10 ⁻⁰⁷	7.2×10 ⁻⁰⁹
82	T b - 160	3.8 × 10 ⁻³⁵	1.5×10 ⁻³⁴	3.4 × 10 ⁻³⁴
83	Dy - 159	0.0	0.0	0.0
84	Но-163	0.0	0.0	0.0

第5表 汚染の放射性核種組成比(原子炉停止20年後)(4/8)

拉毛				廃液系金属及び
		カム糸金属	カス系コンクリート	廃液系コンクリート
85	H o - 166m	7.1×10 ⁻⁰⁶	3.7×10 ⁻⁰⁶	4.9×10 ⁻⁰⁸
86	T m - 170	5.0×10 ⁻²⁵	2.0×10 ⁻²⁴	0.0
87	T m - 171	2.0×10 ⁻¹⁰	1.0×10 ⁻¹⁰	1.3 × 10 ⁻¹²
88	Yb - 169	0.0	0.0	0.0
89	Lu - 176	1.6×10 ⁻¹³	8.6×10 ⁻¹⁴	1.0 × 10 ⁻¹⁵
90	Lu - 177m	4.5×10 ⁻²⁰	2.4 × 10 ⁻²⁰	2.9 × 10 ⁻²²
91	H f - 175	0.0	0.0	0.0
92	H f - 181	0.0	0.0	0.0
93	Hf-182	3.8×10 ⁻¹⁰	2.0×10 ⁻¹⁰	2.4 × 10 ⁻¹²
94	Та-180	4.6×10 ⁻¹⁸	2.4×10 ⁻¹⁸	2.9×10 ⁻²⁰
95	Та-182	3.8×10 ⁻¹⁰	2.0×10 ⁻¹⁰	2.4 × 10 ⁻¹²
96	W - 181	0.0	0.0	0.0
97	W - 185	7.4×10 ⁻²⁴	3.9×10 ⁻²⁴	4.7 × 10 ⁻²⁶
98	W - 188	0.0	0.0	0.0
99	Re-187	8.8×10 ⁻¹²	4.6 × 10 ⁻¹²	5.6×10 ⁻¹⁴
100	O s - 194	4.8×10 ⁻¹⁶	2.5×10 ⁻¹⁶	3.0 × 10 ⁻¹⁸
101	Ir-192	1.6×10 ⁻⁰⁷	8.7×10 ⁻⁰⁸	1.1 × 10 ⁻⁰⁹
102	Ir-192m	1.6×10 ⁻⁰⁷	8.7×10 ⁻⁰⁸	1.0×10 ⁻⁰⁹
103	Pt-190	0.0	0.0	0.0
104	Pt-193	1.3×10 ⁻⁰⁹	7.1×10 ⁻¹⁰	8.6 × 10 ⁻¹²
105	Hg - 203	0.0	0.0	0.0

第5表 汚染の放射性核種組成比(原子炉停止20年後)(5/8)

拉毛		ᆧᆿᅎᅀᄅ		廃液系金属及び
		リス系金属	カスネコンクリート	廃液系コンクリート
106	Tl-204	9.2×10 ⁻¹⁴	4.8×10 ⁻¹⁴	5.8×10 ⁻¹⁶
107	P b - 204	1.1×10 ⁻¹⁷	6.0×10 ⁻¹⁸	7.2×10 ⁻²⁰
108	P b - 205	9.7 × 10 ⁻¹²	5.1 × 10 ⁻¹²	6.2×10 ⁻¹⁴
109	P b - 210	8.1×10 ⁻¹²	3.3×10 ⁻¹¹	4.6 × 10 ⁻¹¹
110	Bi-208	1.5×10 ⁻¹²	7.9×10 ⁻¹³	9.5 × 10 ⁻¹⁵
111	Bi-210m	4.2×10 ⁻¹²	2.2×10 ⁻¹²	2.7 × 10 ⁻¹⁴
112	P o - 210	7.6×10 ⁻¹²	3.1×10 ⁻¹¹	4.3 × 10 ⁻¹¹
113	R a - 226	3.8×10 ⁻¹¹	1.6×10 ⁻¹⁰	2.0×10 ⁻¹⁰
114	R a - 228	7.0×10 ⁻¹²	3.7 × 10 ⁻¹²	4.6×10 ⁻¹⁴
115	Ас-227	1.0×10 ⁻¹⁰	4.1×10 ⁻¹⁰	9.0×10 ⁻¹⁰
116	Th - 228	1.1×10 ⁻⁰⁸	4.0×10 ⁻⁰⁸	1.1×10 ⁻⁰⁷
117	Th - 229	8.4 × 10 ⁻¹²	5.8×10 ⁻¹²	3.5 × 10 ⁻¹²
118	Th - 230	7.3×10 ⁻⁰⁹	3.0×10 ⁻⁰⁸	3.3×10 ⁻⁰⁸
119	Th-232	7.1×10 ⁻¹²	3.7 × 10 ⁻¹²	4.7 × 10 ⁻¹⁴
120	Pa-231	2.3×10 ⁻¹⁰	9.2×10 ⁻¹⁰	1.9×10 ⁻⁰⁹
121	U - 232	1.0×10 ⁻⁰⁸	3.9×10 ⁻⁰⁸	1.1×10 ⁻⁰⁷
122	U - 233	2.9×10 ⁻⁰⁹	2.0×10 ⁻⁰⁹	1.0×10 ⁻⁰⁹
123	U - 234	3.4×10 ⁻⁰⁵	1.4×10 ⁻⁰⁴	1.3×10 ⁻⁰⁴
124	U - 235	1.1×10 ⁻⁰⁷	4.6×10 ⁻⁰⁷	3.6×10 ⁻⁰⁷
125	U - 236	2.6×10 ⁻⁰⁷	1.0×10 ⁻⁰⁶	1.7 × 10 ⁻⁰⁶
126	U - 238	3.5×10 ⁻⁰⁶	1.4×10 ⁻⁰⁵	1.5×10 ⁻⁰⁵

第5表 汚染の放射性核種組成比(原子炉停止20年後)(6/8)

	++++ 15	ポㅋㅈ스티	ガス系コンクリート	廃液系金属及び
		カム糸金属		廃液系コンクリート
127	Np - 236	5.0×10 ⁻¹⁴	2.0×10 ⁻¹³	4.4 × 10 ⁻¹³
128	N p - 237	1.0×10 ⁻⁰⁷	4.1×10 ⁻⁰⁷	8.2×10 ⁻⁰⁷
129	Pu - 236	3.6×10 ⁻¹¹	1.5×10 ⁻¹⁰	3.5×10 ⁻¹⁰
130	Pu - 238	3.3×10 ⁻⁰⁴	1.3×10 ⁻⁰³	3.9 × 10 ⁻⁰³
131	Pu - 239	9.0×10 ⁻⁰⁴	3.7 × 10 ⁻⁰³	5.2 × 10 ⁻⁰³
132	Pu - 240	8.1×10 ⁻⁰⁴	3.3×10 ⁻⁰³	6.7 × 10 ⁻⁰³
133	P u - 241	2.9×10 ⁻⁰²	1.2×10 ⁻⁰¹	2.6×10 ⁻⁰¹
134	Pu - 242	3.9×10 ⁻⁰⁷	1.6×10 ⁻⁰⁶	4.6×10 ⁻⁰⁶
135	Pu - 244	6.8×10 ⁻¹⁵	2.1×10 ⁻¹⁴	7.7×10 ⁻¹⁴
136	A m - 241	1.7×10 ⁻⁰³	7.0×10 ⁻⁰³	1.6 × 10 ⁻⁰²
137	A m - 242m	8.8×10 ⁻⁰⁶	3.5×10 ⁻⁰⁵	1.1×10 ⁻⁰⁴
138	A m - 243	9.1×10 ⁻⁰⁷	3.4×10 ⁻⁰⁶	1.2×10 ⁻⁰⁵
139	C m - 242	7.3×10 ⁻⁰⁶	2.9×10 ⁻⁰⁵	8.8×10 ⁻⁰⁵
140	C m - 243	5.7×10 ⁻⁰⁷	2.2×10 ⁻⁰⁶	7.9×10 ⁻⁰⁶
141	C m - 244	1.5×10 ⁻⁰⁵	4.2×10 ⁻⁰⁵	1.6×10 ⁻⁰⁴
142	C m - 245	5.6×10 ⁻¹⁰	1.3×10 ⁻⁰⁹	5.2×10 ⁻⁰⁹
143	C m - 246	5.9×10 ⁻¹⁰	6.0×10 ⁻¹⁰	1.6×10 ⁻⁰⁹
144	C m - 247	1.3×10 ⁻¹⁵	8.2×10 ⁻¹⁶	8.3×10 ⁻¹⁶
145	C m - 248	9.5×10 ⁻¹⁵	5.2×10 ⁻¹⁵	1.1 × 10 ⁻¹⁵
146	C m - 250	2.6×10 ⁻²²	1.4 × 10 ⁻²²	7.0×10 ⁻²⁴
147	Cf-249	4.0×10 ⁻¹⁴	2.1×10 ⁻¹⁴	2.3×10 ⁻¹⁵

第5表 汚染の放射性核種組成比(原子炉停止20年後)(7/8)

	核種	ガス系金属	ガス系コンクリート	廃液系金属及び
				廃液系コンクリート
148	Cf-250	1.8×10 ⁻¹³	9.7×10 ⁻¹⁴	6.2×10 ⁻¹⁵
149	Cf-251	1.8×10 ⁻¹⁵	9.4×10 ⁻¹⁶	4.8×10 ⁻¹⁷
150	Cf-252	8.1×10 ⁻¹⁵	4.3×10 ⁻¹⁵	9.4×10 ⁻¹⁷

第5表 汚染の放射性核種組成比(原子炉停止20年後)(8/8)

対象核種 / key 核種	スケーリングファクタ
C - 14 / C o - 60	3.6
C 1 - 36 / C o - 60	2.0 × 10 ²
Ni-63/Co-60	9.5
Sr-90/Cs-137	1.9

第6表 スケーリングファクタ(原子炉停止20年後)

H-3平均放射能濃度 廃棄物の性状 (Bq/t) 7.5×10^{7} 金属 ガス系 1.1 × 10⁶ コンクリート 金属 / コンクリート 2.0 × 10⁵ 廃液系

第7表 平均放射能濃度(原子炉停止20年後)

	核種		核種
1	H - 3	20	C s - 137
2	Be-10	21	B a - 133
3	C - 14	22	P m - 145
4	Cl-36	23	E u - 152
5	K - 40	24	E u - 154
6	Ca-41	25	E u - 155
7	Fe-55	26	T b - 157
8	C o - 60	27	H o - 163
9	Ni-59	28	H o - 166m
10	Ni-63	29	Ir-192
11	R b - 87	30	Ir -192m
12	Sr-90	31	Pt-193
13	Zr-93	32	Tl-204
14	N b - 93m	33	Pu - 238
15	N b - 94	34	Pu - 239
16	Ag - 108m	35	Pu - 240
17	C d - 113m	36	Pu - 241
18	S b - 125	37	A m - 241
19	C s - 134		·

第8表 選定した37核種

被ばく 経路	線量評価シナリオ			核種選定 対象
地下水	海産物摂取	基本		
		変動		
		自然	液状化浸漬	1
			津波浸漬	1
	海岸活動	基本		
		変動		
		自然	液状化浸漬	1
			津波浸漬	1
	井戸水飲用摂取	人為	井戸水利用	
土地利用	建設	基本		
		変動	全量掘削	1
		自然	覆土喪失	1
	居住	基本		
		変動	全量掘削	1
		自然	覆土喪失	1
	家庭菜園	基本		
		変動	全量掘削	1
		自然	覆土喪失	1
	農産物摂取	人為	跡地利用	1
	畜産物摂取			
	公園	基本		2
		自然	覆土喪失	2
	廃棄物露呈	自然		2, 3

第9表 核種選定に使用した線量評価シナリオ

- 1:核種に依存するパラメータが同一であるため,選定された被ばく経路(基本シナリオ)と相対重要度が同一である。
- 2:被ばくに寄与する核種の組成が同じであるため居住シナリオで代表できる。
- 3:評価時期が居住シナリオと違うため必然的に長半減期核種の相対重要度 が高くなるが被ばく線量に寄与する核種の放射能量の減衰により被ばく 線量は低くなることから主要な放射性核種の選定シナリオの対象外とし た。

「指摘事項管理表」番号16

第10表 海産物摂取シナリオの評価パラメータの比較

記号	パラメータ	基本 1	変動 ²
S_D	廃棄物埋設地平面積(m ²)		
VD	年間浸透水量(m ³ /(m ² ·y))		
H _D	廃棄物層深さ(m)		
η(i)	放射性核種 <i>i</i> の廃棄物からの溶出率(1 / y)		
$T_{1/2}(i)$	放射性核種 <i>i</i> の半減期 (y)		
$A_W(i)$	廃棄物受入れ時の放射性核種 <i>i</i> の総放射能量(Bq)		
$P_D(j)$	廃棄物埋設地内の媒体 <i>j</i> の体積割合(-)		
$\varepsilon_D(j)$	廃棄物埋設地内の媒体 <i>j</i> の間隙率(-)		
$\rho_D(j)$	廃棄物埋設地内の媒体 <i>j</i> の粒子密度(kg / m³)		
$K_D(j,i)$	廃棄物埋設地内の媒体 <i>j</i> の放射性核種 <i>i</i> の収着分配 係数(m ³ / kg)		
EGW	帯水層土壌の間隙率(-)		
V _{GW}	地下水流速(ダルシー流速)(m/y)		
LD	廃棄物埋設地の長さ(m)		
W _D	廃棄物埋設地の幅(m)		
H _{GW}	帯水層の厚さ(m)		
ρ_{GW}	帯水層土壌の粒子密度(kg/m³)		
$K_{GW}(i)$	帯水層土壌における放射性核種 <i>i</i> の収着分配係数(m ³ / kg)		
D _{GW}	帯水層の分子拡散係数(m ² /y)		
X _{SW}	廃棄物埋設地下流端から海までの距離(m)		
V _{SW}	評価海域の海水交換水量(m ³ /y)		
$R_{SW}(m,i)$			

$Q_{SW}(m)$	海産物 <i>m</i> の年間摂取量(kg / y)	
G _{SW} (m)	評価海域における海産物 <i>m</i> の市場係数(-)	
D _{CFING} (i)	放射性核種 <i>i</i> の経口摂取内部被ばく線量換算係数 (Sv / Bg)	

1:基本の欄にある「」は,放射性核種に依存しているパラメータを示す。

2:変動の欄にある「」は,基本シナリオからパラメータの数値を変更し ているものを示す。

記号	パラメータ	数值	設定根拠等
SD	廃棄物埋設地平面積 (m ²)		
VD	年間浸透水量 (m ³ /(m ² ·y))		
H_D	廃棄物層深さ (m)		
η(i)	放射性核種 <i>i</i> の廃棄 物からの溶出率 (1/y)		
T _{1/2} (i)	放射性核種 <i>i</i> の半減 期 (y)		

第11表 海産物摂取シナリオの評価パラメータ

記号	パラメータ	数値	設定根拠等
T1/2(i)	放射性核種 <i>i</i> の半減 期 (y)		
$A_{W}(i)$	廃棄物受入れ時の 放射性核種 <i>i</i> の総放 射能量 (Bq)		

記号	パラメータ	数値	設定根拠等
Aw(i)	廃棄物受入れ時の 放射性核種 <i>i</i> の総放 射能量(Bq)		
P _D (j)	廃棄物埋設地内の 媒体 <i>j</i> の体積割合 (-)		
€D(j)	廃棄物埋設地内の 媒体jの間隙率(-)		
ρ _D (j)	廃棄物埋設地内の 媒体 <i>j</i> の粒子密度 (kg/m ³)		
K _D (j, i)	廃棄物埋設地内の 媒体 <i>j</i> の放射性核種 <i>i</i> の収着分配係数(m ³ /kg)		

記号	パラメータ	数値	設定根拠等
K _D (j, i)	廃棄物埋設地内の 媒体jの放射性核種 iの収着分配係数(m ³ /kg)		
€GW	帯水層土壌の間隙 率 (-)		
V_{GW}	地下水流速(ダルシー 流速) (m/y)		
L _D	廃棄物埋設地の長 さ (m)		
WD	廃棄物埋設地の幅(m)		
H_{GW}	帯水層の厚さ (m)		

記号	パラメータ	数値	設定根拠等
₽ <i></i> g₩	帯水層土壌の粒子 密度(kg/m ³)		
$K_{GW}(i)$	帯水層土壤におけ る放射性核種 i の収 着分配係数 (m ³ /kg)		

記号	パラメータ	数値	設定根拠等
D _{GW}	帯水層の分子拡散 係数 (m ² /y)		
Xsw	廃棄物埋設地下流端か ら海までの距離(m)		
V _{SW}	評価海域の海水交 換水量 (m ³ /y)		
R _{SW} (m, i)	換 放 射性核 種 <i>i</i> の 海 産 物 <i>m</i> への 濃 縮 係 数 (m ³ /kg)		
記号	パラメータ	数値	設定根拠等
----------------	---	----	-------
Rsw(m, i)	放射性核種 i の海産 物 m への濃縮係数 (m ³ /kg)		
$R_{SW}(m, i)$	放射性核種 i の海産 物 m への 濃縮係数 (m ³ /kg)		

記号	パラメータ	数值	設定根拠等
R _{sw} (m, i)	放射性核種 <i>i</i> の海産 物 <i>m</i> への濃縮係数 (m ³ / kg)		
<i>R</i> _{SW} (<i>m</i> , <i>i</i>)	物 m への濃縮係数 (m ³ /kg)		
Qsw(m)	海産物 m の年間摂 取量 (kg/y)		

記号	パラメータ	数値	設定根拠等
G _{SW} (m)	評価海域における 海産物 m の市場係 数 (-)		
D _{CFING} (i)	放射性核種iの経口 摂取内部被ばく線 量換算係数 (Sv/ Bq)		
D _{CFING} (i)	放射性核種 <i>i</i> の経口 摂取内部被ばく線 量換算係数(Sv/ Bq)		

記号	パラメータ	数值	設定根拠等
V_{MD}	年間浸透水量 (m ³ /(m ² y))		
$K_{MD}(j,i)$	廃棄物埋設地内の媒 体 j の放射性核種 i の収着分配係数 (m ³ /kg)		
V_{MGW}	地ト水流速(ダルシ一流速) (m/y)		

第12表 海産物摂取シナリオ(不確実性考慮)の評価パラメータ

記号	パラメータ	数値	設定根拠等
K _{MGW} (i)	帯水層土壌におけ る放射性核種 <i>iの</i> 収 着分配係数(m ³ / kg)		

記号	パラメータ	基本※1	変動**2
SD	廃棄物埋設地平面積 (m²)	0	0
VD	年間浸透水量 (m ³ / (m ² ·y))	0	O
H_D	廃棄物層深さ (m)	0	0
η(i)	放射性核種 i の廃棄物からの溶出率 (1/y)	0	0
T1/2(i)	放射性核種 i の半減期 (y)	•	0
Aw(i)	廃棄物受入れ時の放射性核種 i の総放射能量(Bq)	•	0
$P_D(j)$	廃棄物埋設地内の媒体jの体積割合(-)	0	0
$\varepsilon_D(j)$	廃棄物埋設地内の媒体jの間隙率(-)	0	0
ρ _D (j)	廃棄物埋設地内の媒体jの粒子密度(kg/m ³)	0	0
$K_D(j, i)$	廃棄物埋設地内の媒体jの放射性核種iの収着分配 係数(m ³ /kg)	•	©
€GW	帯水層土壌の間隙率(-)	0	0
V_{GW}	地下水流速(ダルシー流速) (m/y)	0	O
L_D	廃棄物埋設地の長さ (m)	0	0
WD	廃棄物埋設地の幅 (m)	0	0
H_{GW}	帯水層の厚さ (m)	0	0
ρ _{GW}	帯水層土壤の粒子密度(kg/m ³)	0	0
K _{GW} (i)	帯水層土壤における放射性核種 i の収着分配係数(m ³ /kg)	•	Ø
D_{GW}	帯水層の分子拡散係数 (m²/y)	0	0
X_{SW}	廃棄物埋設地下流端から海までの距離(m)	0	0
V_{SW}	評価海域の海水交換水量 (m ³ /y)	0	0
Kss(i)	海岸土壌の放射性核種 i の収着分配係数(m ³ /kg)	•	0
ρss	海岸土壤粒子密度 (kg/m³)	0	0
ESS	海岸土壌の間隙率 (-)	0	0

第13表 海岸活動シナリオの評価パラメータの比較

記号	パラメータ	基本*1	変動*2
Fss	海岸活動時の空気中粉じん濃度(kg/m ³)	0	0
G _{SS}	空気中粉じんの海岸土壌からの粉じんの割合(-)	0	0
Bss	海岸活動時の呼吸量 (m³/h)	0	0
T _{SS}	年間海岸活動時間 (h/y)	0	0
D _{CFINH} (i)	放射性核種iの吸入内部被ばく線量換算係数(Sv/ Bq)	•	0
Sss	海岸活動時の放射性核種の遮蔽係数(-)	0	0
$D_{CFEXT}(i)$	放射性核種 i の外部被ばく線量換算係数((Sv/h) / (Bq/kg))	•	0

※1:基本の欄にある「●」は、放射性核種に依存しているパラメータを示す。
※2:変動の欄にある「◎」は、基本シナリオからパラメータの数値を変更しているものを示す。

記号	パラメータ	数値	設定根拠等
S_D	廃棄廃棄物埋設地平 面積(m²)		
VD	年間浸透水量 (m ³ /(m ² ·y))		
H _D	廃棄物層深さ (m)		
η(i)	放射性核種 <i>i</i> の廃棄 物からの溶出率 (1/y)		
T _{1/2} (i)	放射性核種 <i>i</i> の半減 期 (y)		

第14表 海岸活動シナリオの評価パラメータ

記号	パラメータ	数値	設定根拠等
T1/2(i)	放射性核種 <i>i</i> の半減 期 (y)		
Aw(i)	廃棄物受入れ時の 放射性核種 i の総放 射能量 (Bq)		

記号	パラメータ	数値	設定根拠等
Aw(i)	廃棄物受入れ時の 放射性核種 <i>i</i> の総放 射能量(Bq)		
P _D (j)	廃棄物埋設地内の 媒体 <i>j</i> の体積割合 (-)		
€D(j)	廃棄物埋設地内の 媒体jの間隙率(-)		
ρ _D (j)	廃棄物埋設地内の 媒体 <i>j</i> の粒子密度 (kg/m ³)		
K _D (j, i)	廃棄物埋設地内の 媒体jの放射性核種 iの収着分配係数(m ³ /kg)		

記号	パラメータ	数值	設定根拠等
K _D (j, i)	廃棄物埋設地内の 媒体jの放射性核種 iの収着分配係数(m ³ /kg)		
CGW	帯水層土壤の間隙率 (-)		
V_{GW}	地下水流速(ダルシー 流速) (m/y)		
L _D	廃棄物埋設地の長さ (m)		
WD	廃棄物埋設地の幅(m)		
H_{GW}	帯水層の厚さ (m)		
₽g₩	帯水層土壌の粒子 密度(kg/m ³)		

Kor(i) 帯水層土壌におけ る放射性核種 tの収 着分配係数 (m³/ kg)	
D _{GW} 帯水層の分子拡散係 数 (m²/y) X _{SW} 廃棄物埋設地下流端か	

記号	パラメータ	数値	設定根拠等
V _{SW}	評価海域の海水交換 水量 (m ³ /y)		
$K_{SS}(i)$	海岸土壌の放射性 核種 <i>i</i> の収着分配係 数 (m ³ /kg)		
ρss	7冊岸土壤粒子密度(kg /m³)		

記号	パラメータ	数値	設定根拠等
223	海岸土壤の間隙率 (-)		
F _{SS}	海岸活動時の空気中粉 じん濃度(kg/m ³)		
G _{SS}	空気中粉じんの海岸 土壤からの粉じんの 割合 (-)		
B _{SS}	海岸活動時の呼吸量 (m ³ /h)		
T_{SS}	年間海岸活動時間(h /y)		
D _{CFINH} (i)	放射性核種 <i>i</i> の吸入 内部被ばく線量換算 係数 (Sv/Bq)		

記号	パラメータ	数値	設定根拠等
D _{CFINH} (i)	放射性核種 <i>i</i> の吸入内 部被ばく線量換算係数 (Sv/Bq)		
S _{SS}	海岸活動時の放射性核 種の遮蔽係数(-)		
D _{CFEXT} (i)	放射性核種 i の外部 被ばく線量換算係数 ((Sv/h)/(Bq/ kg))		

記号	パラメータ	数值	設定根拠等
D _{CFEXT} (i)	放射性核種 i の外部 被ばく線量換算係数 ((Sv/h) / (Bq/ kg))		

記号	パラメータ	数値	設定根拠等
V_{MD}	年間浸透水量 (m ² /(m ² ・y))		
K _{MD} (j, i)	廃棄物埋設地内の媒 体 j の放射性核種 i の収着分配係数 (m ³ /kg)		

第15表 海岸活動シナリオ(不確実性考慮)の評価パラメータ

記号	パラメータ	数値	設定根拠等
V_{MGW}	地下水流速(ダルシ ー流速) (m/y)		
K _{MGW} (i)	帯水層土壤におけ る放射性核種 <i>iの</i> 収 着分配係数(m ³ / kg)		

記号	パラメータ	人為*1
S _D	廃棄物埋設地平面積 (m ²)	0
V_D	年間浸透水量 (m ³ / (m ² ·y))	0
H_D	廃棄物層深さ (m)	0
$\eta_{WW}(i)$	放射性核種 i の廃棄物からの溶出率 (1/y)	0
$T_{1/2}(i)$	放射性核種 i の半減期 (y)	•
$A_{w(i)}$	廃棄物受入れ時の放射性核種 i の総放射能量 (Bq)	٠
$P_D(j)$	廃棄物埋設地内の媒体 jの体積割合(-)	0
ε _D (j)	廃棄物埋設地内の媒体jの間隙率(一)	0
р _D (j)	廃棄物埋設地内の媒体jの粒子密度(kg/m ³)	0
K _{MD} (j, i)	廃棄物埋設地内の媒体jの放射性核種iの収着分配 係数(m ³ /kg)	•
EGW	帯水層土壌の間隙率(-)	0
V _{GW}	地下水流速 (ダルシー流速) (m/y)	0
LD	廃棄物埋設地の長さ (m)	0
W_D	廃棄物埋設地の幅 (m)	0
H_{GW}	帯水層の厚さ (m)	0
₽G₩	帯水層土壌の粒子密度 (kg/m³)	0
K _{GW} (i)	帯水層土壤における放射性核種 i の収着分配係数 (m ³ /kg)	٠
D_{GW}	帯水層の分子拡散係数 (m²/y)	0
Xsw	廃棄物埋設地下流端から海までの距離(m)	0
Vsw	評価海域の海水交換水量 (m ³ /y)	0
Kss(i)	海岸土壤の放射性核種 i の収着分配係数 (m ³ /kg)	۲
ρ _{SS}	海岸土壤粒子密度(kg/m ³)	0
ESS	海岸土壌の間隙率(-)	0

第16表 井戸水飲用摂取シナリオの評価パラメータの比較

記号	パラメータ	人為**1
F _{SS}	海岸活動時の空気中粉じん濃度(kg/m³)	0
G_{SS}	空気中粉じんの海岸土壌からの粉じんの割合(-)	0
B _{SS}	海岸活動時の呼吸量 (m ³ /h)	0
T _{SS}	年間海岸活動時間 (h/y)	0
$D_{CFING}(i)$	放射性核種 i の経口摂取内部被ばく線量換算係数 (Sv/Bq)	٠
S_{SS}	海岸活動時の放射性核種の遮蔽係数(-)	0
D _{CFEXT} (i)	放射性核種 <i>i</i> の外部被ばく線量換算係数((Sv/h) / (Bq/kg))	٠
Rww	井戸水への放射性核種を含む地下水の混合割合(一)	0
X_{WW}	廃棄物埋設地下流端から井戸までの距離 (m)	0
Q_{WW}	年間飲料水摂取量 (m³/y)	0
G_{WW}	年間飲料水量中の井戸水からの飲料水の割合 (一)	0

※1:人為の欄にある「●」は、放射性核種に依存しているパラメータを示す。

記号	パラメータ	数値	設定根拠等
S _D	廃棄物埋設地平面積 (m ²)		
VD	年間浸透水量 (m ³ / (m ² ·y))		
H_D	廃棄物層深さ (m)		
ηww(i)	放射性核種 <i>i</i> の廃棄 物からの溶出率 (1/y)		
T1/2(i)	放射性核種 <i>i</i> の半減 期 (y)		

第17表 井戸水飲用摂取シナリオの評価

記号	パラメータ	数値	設定根拠等
T _{1/2} (i)	放射性核種 <i>i</i> の半減 期 (y)		
Aw(i)	廃棄物受入れ時の 放射性核種 i の総放 射能量 (Bq)		

記号	パラメータ	数値	設定根拠等
A w(i)	廃棄物受入れ時の 放射性核種 <i>i</i> の総放 射能量 (Bq)		
P _D (j)	廃棄物埋設地内の媒 体 <i>j</i> の体積割合()		
€D(j)	廃棄物埋設地内の媒 体jの間隙率(-)		
ρ _Φ (j)	廃棄物埋設地内の媒 体 <i>j</i> の粒子密度(kg/ m ³)		
K _{MD} (j,i)	廃棄物埋設地内の 媒体 <i>j</i> の放射性核種 <i>i</i> の収着分配係数(m ³ /kg)		

記号	パラメータ	数値	設定根拠等
K _D (j, i)	廃棄物埋設地内の 媒体jの放射性核種 iの収着分配係数(m ³ /kg)		
€G₩	帯水層土壌の間隙率 (-)		
V_{GW}	地下水流速(ダルシー 流速) (m/y)		
LD	廃棄物埋設地の長さ (m)		
W _D	廃棄物埋設地の幅(m)		
H_{GW}	帯水層の厚さ (m)		
ρ _{GW}	帯水層土壌の粒子密 度(kg/m ³)		

記号	パラメータ	数値	設定根拠等
$K_{GW}(i)$	帯水層土壌におけ る放射性核種 <i>i</i> の収 着分配係数(m ³ / kg)		
D_{GW}	帯水層の分子拡散係 数 (m ² /y)		

記号	パラメータ	数値	設定根拠等
Xsw	廃棄物埋設地下流端か ら海までの距離(m)		
V _{SW}	評価海域の海水交換 水量 (m ³ /y)		
$K_{SS}(i)$	海岸土壌の放射性 核種 <i>i</i> の収着分配係 数 (m ³ /kg)		

記号	パラメータ	数值	設定根拠等
ρss	海岸土壤粒子密度(kg /m ³)		
ε_{SS}	海岸土壤の間隙率 (-)		
F _{SS}	海岸活動時の空気中粉 じん濃度(kg/m ³)		
Gss	空気中粉じんの海岸 土壌からの粉じんの 割合 (-)		
B _{SS}	海岸活動時の呼吸量 (m ³ /h)		
T _{SS}	年間海岸活動時間(h /y)		
D _{CFING} (i)	放射性核種iの経口 摂取内部被ばく線 量換算係数(Sv/ Bq)		
記号	パラメータ	数値	設定根拠等
------------------------	---	----	-------
$D_{CFING}(i)$	放射性核種 <i>i</i> の経口 摂取内部被ばく線 量換算係数 (Sv/ Bq)		
Sss	海岸活動時の放射性核 種の遮蔽係数(-)		
D _{CFEXT} (i)	放射性核種 <i>i</i> の外部被 ばく線量換算係数 ((Sv/h) / (Bq/ kg))		

記号	パラメータ	数値	設定根拠等
D _{CFEXT} (i)	放射性核種 <i>i</i> の外部被 ばく線量換算係数 ((Sv/h) / (Bq/ kg))		
Rww	井戸水への放射性核 種を含む地下水の混 合割合(-)		
Xww	廃棄物埋設地下流端 から井戸までの距離 (m)		
Qww	年間飲料水摂取量 (m ³ /y)		
Gww	年間飲料水量中の井 戸水からの飲料水の 割合(一)		

記号	パラメータ	基本**1
SD	廃棄物埋設地平面積 (m ²)	0
H_D	廃棄物層深さ (m)	0
$T_{1/2}(i)$	放射性核種 i の半減期 (y)	•
$A_W(i)$	廃棄物受入れ時の放射性核種 i の総放射能量 (Bq)	•
D _{CFINH} (i)	放射性核種 i の吸入内部被ばく線量換算係数 (Sv/Bq)	•
Pc	廃棄物層と周辺土壌の混合による希釈係数 (一)	0
ρς	廃棄物層のみかけ密度 (kg/m³)	0
S_C	作業時における放射性核種の遮蔽係数(-)	0
T_C	年間作業時間 (h/y)	0
Fc	作業時の空気中粉じん濃度(kg/m³)	0
G_C	空気中粉じんのうち掘削土壌からの粉じんの割合 (-)	0
B _C	作業者の呼吸量 (m³/h)	0
D _{CFEXT} (i)	放射性核種 i の外部被ばく線量換算係数((Sv/h) / (Bq/kg))	•

第18表 跡地利用建設シナリオ (3m 掘削)の評価パラメータ

※1:基本の欄にある「●」は、放射性核種に依存しているパラメータを示す。

記号	パラメータ	数値	設定根拠等
S _D	廃棄物埋設地平面積(m ²)		
H_D	廃棄物層深さ (m)		
T _{1/2} (i)	放射性核種 <i>i</i> の半減 期 (y)		

第19表 跡地利用建設シナリオ (3m 掘削)の評価パラメータ

記号	パラメータ	数値	設定根拠等
T _{1/2} (i)	放射性核種 <i>i</i> の半減 期 (y)		
Aw(i)	廃 栗物受入れ時の 放射性核種 <i>i</i> の総放 射能量(Bq)		

記号	パラメータ	数値	設定根拠等
$A_{W}(i)$	廃 棄物 受入れ 時の 放射性核種 <i>i</i> の総放 射能量 (Bq)		
D _{CFINH} (i)	放射性核種 i の吸入 内部被ばく線量換算 係数 (Sv/Bq)		

記号	パラメータ	数値	設定根拠等
Dcfinh(i)	放射性核種 <i>i</i> の吸入内 部被ばく線量換算係 数 (Sv/Bq)		
P _C	廃棄物層と周辺土壌 の混合による希釈係 数(-)		
ρς	廃棄物層のみかけ密 度 (kg/m ³)		
S _C	作業時における放射性 核種の遮蔽係数(-)		
Tc	年間作業時間 (h/y)		
Fc	作業時の空気中粉じ ん濃度(kg/m ³)		
Gc	空気中粉じんのうち 掘削土壤からの粉じ んの割合(-)		
Bc	作業者の呼吸量 (m ³ /h)		
D _{CFEXT} (i)	放射性核種 <i>i</i> の外部被 ばく線量換算係数 ((Sv/h)/(Bq/ kg))		

記号	パラメータ	数値	設定根拠等
D _{CFEXT} (i)	放射性核種 <i>i</i> の外部被 ばく線量換算係数 ((Sv/h) / (Bq/ kg))		

記号	パラメータ	基本**1
SD	廃棄廃棄物埋設地平面積 (m ²)	0
H_D	廃棄物層深さ (m)	0
$T_{1/2}(i)$	放射性核種 i の半減期 (y)	•
$A_W(i)$	廃棄物受入れ時の放射性核種 i の総放射能量 (Bq)	•
Pc	廃棄物層と周辺土壌の混合による希釈係数(一)	0
ρς	廃棄物層のみかけ密度 (kg/m ³)	0
S_L	居住時における放射性核種の遮蔽係数(-)	0
T_L	年間居住時間 (h/y)	0
$D_{CFEXT}(i)$	放射性核種 i の外部被ばく線量換算係数((Sv/h) / (Bq/kg))	•

第20表 跡地利用居住シナリオ (3m 掘削)の評価パラメータ

※1:基本の欄にある「●」は、放射性核種に依存しているパラメータを示す。

記号	パラメータ	数值	設定根拠等
SD	廃棄物埋設地平面積 (m ²)		
H_D	廃棄物層深さ (m)		
T _{1/2} (i)	放射性核種 <i>i</i> の半減 期 (y)		

第21表 跡地利用居住シナリオ (3m 掘削)の評価パラメータ

記号	パラメータ	数値	設定根拠等
T1/2(i)	放射性核種 <i>i</i> の半減 期 (y)		
$\Lambda_{W}(i)$	廃棄物受入れ時の 放射性核種 <i>i</i> の総放 射能量 (Bq)		

記号	パラメータ	数値	設定根拠等
Aw(i)	廃棄物受入れ時の 放射性核種 <i>i</i> の総放 射能量(Bq)		
Pc	廃棄物層と周辺土 壊の混合による希 釈係数(一)		
ρς	廃棄物層のみかけ 密度 (kg/m ³)		
SL	居住時における放 射性核種の遮蔽係 数(-)		
T_L	年間居住時間(h/y)		
D _{CFEXT} (i)	放射性核種 <i>i</i> の外部被 ばく線量換算係数 ((Sv/h) / (Bq/ kg))		

記号	パラメータ	数値	設定根拠等
D _{CFEXT} (i)	放射性核種 <i>i</i> の外部被 ばく線量換算係数 ((Sv/h) / (Bq/ kg))		

記号	パラメータ	基本*1
S _D	廃棄物埋設地平面積(m ²)	0
H_D	廃棄物層深さ (m)	0
T1/2(i)	放射性核種 i の半減期 (y)	•
Aw(i)	廃棄物受入れ時の放射性核種 i の総放射能量 (Bq)	•
$D_{CFING}(i)$	放射性核種 i の経ロ摂取内部被ばく線量換算係数 (Sv/Bq)	•
Pc	廃棄物層と周辺土壌の混合による希釈係数(一)	0
ρς	廃棄物層のみかけ密度 (kg/m³)	0
$R_F(k,i)$	土壌から農産物 k への放射性核種 i の移行係数((Bq /kg-wet 農産物) / (Bq/kg-dry 土壌))	•
$P_{LF}(k)$	家庭菜園の農産物 k の根からの放射性核種の吸収割 合(-)	0
$Q_F(k)$	農産物 k の年間摂取量 (kg/y)	0
$G_{LF}(k)$	家庭菜園の農産物 k の市場係数(一)	0

第22表 跡地利用家庭菜園シナリオ (3m 掘削) の評価パラメータ

※1:基本の欄にある「●」は、放射性核種に依存しているパラメータを示す。

記号	パラメータ	数値	設定根拠等
S _D	廃棄物埋設地平面積 (m ²)		
HD	廃棄物層深さ (m)		
T1/2(i)	放射性核種 <i>i</i> の半減 期 (y)		

第23表 跡地利用家庭菜園シナリオ (3m 掘削)の評価パラメータ

記号	パラメータ	数値	設定根拠等
T _{1/2} (i)	放射性核種 <i>i</i> の半減 期 (y)		
$A_{W}(i)$	廃棄物受入れ時の 放射性核種 <i>i</i> の総放 射能量 (Bq)		

記号	パラメータ	数値	設定根拠等
Aw(i)	廃棄物受入れ時の 放射性核種 <i>i</i> の総放 射能量(Bq)		
$D_{CFING}(i)$	放射性核種 <i>i</i> の経口 摂取内部被ばく線 量換算係数 (Sv/ Bq)		

記号	パラメータ	数値	設定根拠等
Dcfing(i)	放射性核種 <i>i</i> の経口 摂取内部被ばく線 量換算係数(Sv/ Bq)		
P _C	廃棄物層と周辺土 壊の混合による希 釈係数(-)		
ρς	廃棄物層のみかけ 密度 (kg/m ³)		
$R_F(k,i)$	土壤から農産物 k への放射性核種 i の 移行係数 ((Bq/ kg-wet 農産物) / (Bq/kg-dry 土 壞))		

記号	パラメータ	数値	設定根拠等
$R_F(k, i)$	土壌から農産物 k へ の放射性核種 i の移 行係数((Bq/kg-wet 農産物) / (Bq/ kg-dry 土壌))		
$P_{LF}(k)$	家庭菜園の農産物 k の根からの放射性核 種の吸収割合(-)		
$Q_F(k)$	農産物 k の年間摂取 量 (kg/y)		
$G_{LF}(k)$	家庭菜園の農産物 <i>k</i> の市場係数(-)		

記号	パラメータ	人為*1
SD	廃棄廃棄物埋設地平面積 (m ²)	0
H_D	廃棄物層深さ (m)	0
$T_{1/2}(i)$	放射性核種 i の半減期 (y)	•
$A_W(i)$	廃棄物受入れ時の放射性核種 i の総放射能量 (Bq)	•
$D_{CFING}(i)$	放射性核種 i の経ロ摂取内部被ばく線量換算係数 (Sv/Bq)	•
ρ _C	廃棄物層のみかけ密度 (kg/m³)	0
$R_{FN}(k,i)$	土壌から農産物 k への放射性核種 i の移行係数((Bq /kg-wet 農産物) /(Bq/kg-dry 土壌))	•
$P_{FN}(k)$	農産物 k (飼料)の根からの放射性核種の吸収 割合 (-)	0
$R_{SF}(n,i)$	飼料から畜産物 n への放射性核種 i の移行 係数 (d/kg)	•
G_{FN}	放射性核種を含む飼料の混合割合 (-)	0
$Q_{FN}(n)$	家畜 (畜産物) nの1日当たりの飼料摂取量 (kg-dry/d)	0
$Q_{SF}(n)$	畜産物 n の年間摂取量 (kg/y)	0
$G_{SF}(n)$	跡地で育成された家畜(畜産物)nの市場係数 (-)	0

第24表 跡地利用畜産物摂取シナリオの評価パラメータ

※1:人為の欄にある「●」は、放射性核種に依存しているパラメータを示す。

記号	パラメータ	数値	設定根拠等
S _D	廃棄廃棄物埋設地平 面積(m ²)		
H_D	廃棄物層深さ (m)		
T _{1/2} (i)	放射性核種 i の半減 期 (y)		

第25表 跡地利用畜産物摂取シナリオの評価パラメータ

記号	パラメータ	数值	設定根拠等	
$A_{W}(i)$	廃薬物受入れ時の 放射性核種 i の総放 射能量 (Bq)			

記号	パラメータ	数値	設定根拠等
$D_{CFING}(i)$	放射性核種iの経口 摂取内部被ばく線 量換算係数 (Sv/ Bq)		
$D_{CFING}(i)$	放射性核種 <i>i</i> の経口 摂取内部被ばく線 量換算係数 (Sv/ Bq)		
ρς	廃棄物層のみかけ 密度 (kg/m ³)		

記号	パラメータ	数値	設定根拠等
$R_{FN}(k,i)$	土壌から農産物 k (飼料)への放射性 核種 i の移行係数 ((Bq/kg-dry 農 産物) / (Bq/ kg-dry 土壌))		
$P_{FN}(k)$	根からの放射性核種 の吸収割合(-)		

記号	パラメータ	数値	設定根拠等	
$R_{SF}(n,i)$	飼料から畜産物 n への放射性核種 i の 移行係数 (d/kg)			

記号	パラメータ	数値	設定根拠等	
$R_{SF}(n,i)$	飼料から畜産物 n への放射性核種 i の 移行係数 (d/kg)			

記号	パラメータ	数値	設定根拠等
$R_{SF}(n,i)$	飼料から畜産物 n への放射性核種 i の 移行係数 (d/kg)		

記号	パラメータ	数値	設定根拠等
$R_{SF}(n,i)$	飼料から畜産物 n への放射性核種 i の 移行係数 (d/kg)		

記号	パラメータ	数値	設定根拠等
$R_{SF}(n,i)$	飼料から畜産物 n への放射性核種 i の 移行係数 (d/kg)		
記号	パラメータ	数值	設定根拠等
-------------	--	----	-------
G_{FN}	放射性核種を含む 飼料の混合割合 (-)		
$Q_{FN}(n)$	家畜(畜産物)nの 1日当たりの飼料 摂取量(kg-dry/d)		
$Q_{SF}(n)$	畜産物 n の年間摂 取量 (kg/y)		
$G_{SF}(n)$	跡地で育成された 家畜(畜産物)nの 市場係数(-)		

第26表線量評価シナリオごとの線量評価結果

		被ばく線量(μSv/y)										
拔錘			地下水			跡地			1			
12/12	海産物摂取	海産物摂取	海岸活動	海岸活動	井戸水飲用	建設	居住	家庭菜園	畜産物			
	基本	変動	基本	変動	人為	基本	基本	基本	人為			
H-3	1.632E-03	3.948E-03	8.613E-09	2.084E-08	1.578E+00	5.383E-06	0.000E+00	2.151E-02	2.355E-01			
Be-10	4.931E-09	1.123E-07	4.611E-12	1.050E-10	1.555E-05	5.246E-08	3.501E-10	2.667E-08	3.658E-08			
C-14	5.969E-01	6.050E+00	<u>1.547E-08</u>	1.533E-06	5.989E+00	4.521E-05	2.694E-09	2.705E-02	2.884E-01			
CI-36	2.855E-05	1.625E-04	4.518E-06	2.512E-04	2.447E+01	1.014E-02	3.391E-04	1.260E+00	9.609E+01			
K-40	2.488E-03	3.548E-02	6.684E-05	9.529E-04	1.887E-01	2.884E-03	5.053E-04	5.660E-05	1.757E-03			
Ca-41	5.138E-06	7.011E-05	1.177E-09	1.606E-08	5.297E-01	5.854E-07	0.000E+00	1.327E-03	1.982E-02			
Fe-55	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.318E-07	4.043E-10	1.044E-16	1.193E-09	8.997E-08			
Co-60	0.000E+00	7.209E-17	0.000E+00	1.518E-16	1.042E-03	2.181E-01	3.926E-02	2.999E-04	1.036E-02			
Ni-59	2.311E-06	5.304E-05	1.244E-09	2.855E-08	1.999E-03	3.321E-06	2.347E-07	4.850E-05	2.341E-03			
Ni-63	1.580E-08	7.863E-03	2.909E-13	1.448E-07	1.423E-01	3.208E-05	4.272E-13	1.248E-02	6.025E-01			
Rb-87	4.828E-08	1.058E-06	1.736E-13	3.803E-12	5.467E-04	2.123E-08	4.682E-11	4.707E-06	4.040E-04			
Sr-90	8.360E-06	2.209E-03	4.645E-09	1.227E-06	8.355E+00	1.427E-03	7.503E-05	2.788E-02	4.560E-01			
Zr-93	7.608E-05	1.639E-03	4.055E-08	8.734E-07	6.828E-02	3.728E-06	2.265E-15	1.883E-06	3.029E-06			
Nb-93m	0.000E+00	1.617E-09	0.000E+00	1.149E-12	1.085E-05	1.946E-08	0.000E+00	1.692E-07	4.707E-09			
Nb-94	6.250E-08	1.565E-06	3.951E-07	9.891E-06	2.635E-04	2.588E-03	3.146E-04	3.268E-07	9.091E-09			
Ag-108m	2.235E-07	9.467E-05	4.770E-08	2.021E-05	1.443E-03	1.363E-02	1.062E-03	2.114E-06	7.804E-06			
Cd-113m	0.000E+00	1.018E-07	0.000E+00	1.578E-11	3.615E-06	4.382E-09	2.201E-11	1.195E-06	1.825E-05			
Sb-125	0.000E+00	1.779E-08	0.000E+00	3.574E-09	1.399E-09	7.179E-10	4.402E-11	2.831E-14	2.665E-13			
Cs-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	6.778E-12	6.598E-10	7.036E-11	3.968E-12	3.216E-10			
Cs-137	0.000E+00	4.375E-10	0.000E+00	1.197E-09	1.594E-03	7.064E-02	4.951E-03	8.914E-04	7.225E-02			
Ba-133	6.718E-05	5.109E-04	6.039E-05	4.593E-04	2.701E-03	5.891E-04	2.252E-05	1.462E-06	1.627E-06			
Pm-145	0.000E+00	1.625E-15	0.000E+00	2.221E-16	5.248E-08	2.121E-06	1.236E-10	1.130E-09	2.445E-09			
Eu-152	1.233E-15	3.717E-02	2.631E-15	7.932E-02	3.160E-01	2.286E+00	3.155E-01	7.059E-05	1.453E-04			
Eu-154	6.165E-24	5.144E-04	1.005E-23	8.382E-04	4.770E-03	2.703E-02	4.095E-03	1.063E-06	2.189E-06			
Eu-155	0.000E+00	4.071E-08	0.000E+00	1.612E-08	4.293E-07	3.725E-07	7.454E-10	9.530E-11	1.962E-10			
Tb-157	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.700E-10	8.341E-06	2.042E-11	5.656E-10	8.618E-10			
Ho-163	3.112E-10	1.170E-08	1.033E-13	3.882E-12	6.973E-07	7.765E-10	0.000E+00	5.198E-10	7.921E-10			
Ho-166m	1.719E-08	2.602E-06	6.980E-08	1.057E-05	1.360E-04	2.146E-03	2.148E-04	1.275E-07	1.943E-07			
Ir-192	0.000E+00	5.272E-11	0.000E+00	1.258E-10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00			
Ir-192m	6.126E-06	5.246E-05	1.204E-05	1.031E-04	3.906E-03	1.083E-03	5.862E-05	1.675E-06	1.590E-06			
Pt-193	1.359E-08	2.569E-06	3.347E-13	6.327E-11	9.959E-05	1.883E-09	0.000E+00	7.186E-07	5.393E-07			
TI-204	0.000E+00	2.981E-14	0.000E+00	1.747E-17	3.005E-09	5.249E-11	1.835E-14	3.268E-09	5.964E-08			
Pu-238*	1.047E-23	1.063E-05	0.000E+00	2.045E-07	1.291E-03	2.374E-04	1.446E-10	5.082E-06	1.167E-06			
Pu-239*	4.976E-05	1.342E-03	9.578E-07	2.583E-05	8.548E-02	1.164E-03	9.214E-09	2.492E-05	5.722E-06			
Pu-240 [*]	2.690E-05	1.109E-03	5.177E-07	2.135E-05	6.797E-02	9.940E-04	1.229E-09	2.128E-05	4.886E-06			
Pu-241*	0.000E+00	4.671E-13	0.000E+00	8.441E-15	1.391E-04	5.190E-05	5.463E-10	1.184E-06	2.719E-07			
Am-241*	2.519E-06	1.478E-02	2.264E-09	1.328E-05	1.125E-01	2.505E-03	1.596E-08	9.753E-05	2.018E-05			

子孫核種の影響を考慮

E-38以下は「0.000E+00」と表示する。

: 各シナリオにおける最大線量

「指摘事項管理表」番号18

<u>第27表</u>相対重要度評価結果

核種		地下水					
1×1±	海産物摂取	海産物摂取	井戸水飲用	建設		家庭菜園	<u>畜産物</u>
H-3		変動	0.0645	<u> </u>	<u>奉</u> 本 0,0000		<u>炙</u> 動 0.0025
Be-10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0020
C-14	1.0000	1,0000	0.2447	0.0000	0.0000	0.0215	0.0030
CI-36	0.0000	0.0000	1.0000	0.0044	0.0011	1,0000	1.0000
K-40	0.0042	0.0059	0.0077	0.0013	0.0016	0.0000	0.0000
Ca-41	0.0000	0.0000	0.0216	0.0000	0.0000	0.0011	0.0002
Fe-55	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Co-60	0.0000	0.0000	0.0000	0.0954	0.1244	0.0002	0.0001
Ni-59	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000
Ni-63	0.0000	0.0013	0.0058	0.0000	0.0000	0.0099	0.0063
Rb-87	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Sr-90	0.0000	0.0004	0.3415	0.0006	0.0002	0.0221	0.0047
Zr-93	0.0001	0.0003	0.0028	0.0000	0.0000	0.0000	0.0000
Nb-93m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Nb-94	0.0000	0.0000	0.0000	0.0011	0.0010	0.0000	0.0000
Ag-108m	0.0000	0.0000	0.0001	0.0060	0.0034	0.0000	0.0000
Cd-113m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Sb-125	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cs-134	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cs-137	0.0000	0.0000	0.0001	0.0309	0.0157	0.0007	0.0008
Ba-133	0.0001	0.0001	0.0001	0.0003	0.0001	0.0000	0.0000
Pm-145	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eu-152	0.0000	0.0061	0.0129	1.0000	1.0000	0.0001	0.0000
Eu-154	0.0000	0.0001	0.0002	0.0118	0.0130	0.0000	0.0000
Eu-155	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tb-157	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ho-163	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ho-166m	0.0000	0.0000	0.0000	0.0009	0.0007	0.0000	0.0000
Ir-192	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ir-192m	0.0000	0.0000	0.0002	0.0005	0.0002	0.0000	0.0000
Pt-193	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TI-204	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Pu-238	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000
Pu-239	0.0001	0.0002	0.0035	0.0005	0.0000	0.0000	0.0000
Pu-240	0.0000	0.0002	0.0028	0.0004	0.0000	0.0000	0.0000
Am-241	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0024	0.0040	0.0011	0.0000	0.0001	0.0000
u a at	0.0001	0.0029	0.0109	0.0021	0.0000	0.0001	0.0000

: 重要核種及びその 10%以上の核種

:重要核種の1%以上10%未満の核種

第28表 選定した10核種

	核種
1	H - 3
2	C - 14
3	C l - 36
4	C a - 41
5	C o - 60
6	Sr-90
7	C s - 137
8	E u - 152
9	E u - 154
10	アルファ線を放出する
10	放射性物質(全)

(参考-1)

「指摘事項管理表」番号15

CL 濃度基準値について

- 法令では,33 核種の CL 濃度基準 ³を規定しているが,その中で CL 濃度基準が 0.01Bq/gの核種はI 129のみであり,他の 32 核種のCL濃度基準は 0.1Bq/g 以上 である。
- ➤ IAEA の RS-G-1.7 では, 258 核種の CL 濃度基準 ⁴を規定しているが, その中で CL 濃度基準が 0.01Bq/g の核種は I 129 のみであり, 他の 257 核種の C L 濃度基準は 0.1Bq/g 以上である。
- I 129 は半減期が1.57×10⁷年と長く,また,人体に取り込まれると甲状腺に移行し,甲状腺の被ばく線量への影響が大きいため,他の核種と比べ,CL濃度基準が低く設定されている。
- SRS No.44⁵は, IAEA の RS-G-1.7 に示された CL 濃度基準の算出根拠を示している安 全レポートである。
- SRS No.44 において,放射能濃度値を計算する核種は,BSS %に示されている核種である。これらの核種としては,原子力発電所や核燃料施設などの原子炉施設や研究, 産業及び医療で放射性核種の使用と最も関連性のある核種が含まれ,短寿命核種も含まれている。
- なお, SRS No.44 は, IAEA の RS-G-1.7 に CL 濃度基準が示されている放射性核種以 外の核種についても評価が実施されている。
- IAEA の RS-G-1.7 に CL 濃度基準が示されていない核種の濃度基準を確認するため、
 SRS No.44 の放射能濃度値を対数丸め ⁷をした値を確認した。比較結果を第1表に示す。
- ▶ 以上により, CL 濃度基準が 0.01Bq/g の核種は I 129 のみであり, 0.01Bq/g は限定 された値であるため, 法令や IAEA に CL 濃度基準が記載されていない核種について は, I - 129 の CL 濃度基準を除いた CL 濃度基準のうち, 一番小さい, 0.1Bq/g を設 定した。
 - 1「製錬事業者等における工場等において用いた資材その他の物に含まれる放射性物質の放射能濃度についての確認等に関する規則」(平成17年11月22日 経済産業省令第112号)
 - 2 ^r IAEA SAFETY GUIDE No.RS-G-1.7: Application of the Concepts of Exclusion, Exemption and Clearance (2004)」
 - 3 1に規定された「放射能濃度の基準」をいう。
 - 4 3に規定された「放射能濃度値」をいう。

- 5^r IAEA: Derivation of Activity Concentration Values for Exclusion, Exemption and Clearance, Safety Reports Series No.44 (2005) J
- 6 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, INTERNATIONAL ATOMIC ENERGY AGENCY, INTERNATIONAL LABOUR ORGANISATION, OECD NUCLEAR ENERGY AGENCY, PAN AMERICAN HEALTH ORGANIZATION, WORLD HEALTH ORGANIZATION, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, Safety Series No. 115, IAEA, Vienna (1996) J

	核種	SRS No.44 放射能濃度値 (Bq/g)	CL 濃度基準 ⁷ (Bq/g)
1	C a - 41	81	100
2	Se-79	5.3	10
3	R b - 87	7.4	10
4	Rh - 102	0.040	0.1
5	Pd - 107	530	1000
6	Ag - 108m	0.044	0.1
7	C d - 113m	1.9	1
8	S n - 121m	11	10
9	S n - 126	0.035	0.1
10	Ba-133	0.23	0.1
11	Ba-139	2.7 × 10 ⁷	10 ⁶
12	La-137	2.0	1
13	P m - 145	19	10
14	P m - 146	0.11	0.1
15	T b - 157	110	100
16	H o - 166m	0.045	0.1
17	Pt-193	130	100

第1表 IAEAのRS-G-1.7 に CL 濃度基準が示されていない核種の 放射能濃度値及び CL 濃度基準

7 放射能濃度値が 3×10 ~3×10 ⁺¹の範囲にある場合, 1×10 ⁺¹とする。

(参考-2)

「指摘事項管理表」番号19

主要な放射性核種と合計線量の比較について

主要な放射性核種の選定方法について一貫性を持たせるためにNi - 63 を除外したが, Ni - 63 を除外しても主要な放射性核種の選定に問題ないことを説明するために, 11 核種の線量とNi - 63 を除外した 10 核種の線量について,それぞれ 37 核種の合計 線量との比較を行った。その結果を第1表に示す。

		地下水		跡地				
	海産物摂取	海産物摂取	井戸水飲用	建設	居住	家庭菜園	畜産物	
	基本	変動	人為	基本	基本	基本	人為	
11核種(μSv/y)	5. 99E-01	6.12E+00	4.17E+01	2.62E+00	3.64E-01	1.35E+00	9.78E+01	
10核種(µSv/y)	5.99E-01	6.11E+00	4.15E+01	2.62E+00	3.64E-01	1.34E+00	9.72E+01	
37核種(μSv/y)	6. 01E-01	6.16E+00	4.19E+01	2.64E+00	3.66E-01	1.35E+00	9.78E+01	
11核種/37核種				$\leq 9 9 \%$				
10核種/37核種				$\leq 9 9 \%$				

第1表 主要な放射性核種の線量と合計線量の比較

代表的な線量評価シナリオにおいて,99%以上が選定した10核種となっている。 線量評価の観点から被ばく線量への影響度の大きい限られた放射性核種を制限するこ とで、その他の放射性核種も自ずと制限されると考えられる。

よって,線量評価において相対的に重要となる放射性核種を10核種としても問題ない と考える。

(参考-3)

「指摘事項管理表」番号13

「指摘事項管理表」番号14

スケーリングファクタ法及び平均放射能濃度法を使用することの妥当性について

1.スケーリングファクタ法及び平均放射能濃度法の使用目的

C - 14, Cl - 36, Ni - 63 及びSr - 90 については,スケーリングファクタ法を, H - 3 については,平均放射能濃度法を使用しているが,その目的は,将来の廃棄確認の 際にスケーリングファクタ(SF)法あるいは平均放射能濃度法が適用されることが想定 される核種については,現時点における最新値を用いて評価している。

なお,SF法及び平均放射能濃度法は,原子炉冷却材等で汚染された金属及びコンクリートについて適用しており,原子炉停止20年後に減衰補正している。

2.SF及び平均放射能濃度の設定

SFについては,東海発電所の汚染管理区域のある建屋からのサンプルデータの統計 的手法による処理の結果,線を放出する核種(key 核種)の放射能濃度とSF適用核種 の放射能濃度とのt検定を行い,相関が認められた場合,統計処理で求めた放射能濃度比 をSFとして設定している。また,key 核種との相関が認められないH-3 については, 東海発電所の汚染管理区域のある建屋のうち,L3対象物が発生する領域からのサンプ ルデータを統計的手法により処理して,分散分析検定(F検定)により分類し,L3対象 物が発生する領域の平均放射能濃度を設定している。SF相関図等を添付書類に示す。

3. SF法及び平均放射能濃度法を使用することの妥当性

第1表に計算値とSF法等で評価した値を比較した結果を示す。

			放射能量(Bq))	
	放射化	汚染	汚染	合計	合計
	(計算値)	(計算値)	(SF)	(+)	(+)
H - 3	6.8×10 ¹¹	9.4 × 10 ⁸	4.4×10 ¹¹	6.8×10 ¹¹	1.1 × 10 ^{1 2}
C - 14	2.5×10 ⁹	1.9×10 ⁹	6.8×10 ⁹	4.4×10 ⁹	9.4 × 10 ⁹
Cl - 36	6.4×10 ⁷	6.8×10 ⁶	3.8×10 ¹⁰	7.0×10 ⁷	3.8×10 ¹⁰
Ni-63	3.7×10 ¹⁰	3.8×10 ⁹	1.8×10 ¹⁰	4.0×10 ¹⁰	5.5×10 ¹⁰
Sr-90	6.8×10 ⁶	5.5×10 ⁸	1.3×10 ⁹	5.5×10 ⁸	1.3×10 ⁹

第1表 計算値とSF法等で評価した値

C1-36 以外の核種については,SF法等で評価した値が,計算値で評価した値と比べて過度に保守的にはなっていない。

C1 - 36 は,黒鉛中の不純物同位体で存在するC1 - 35 に中性子が照射され,(n,

)反応により生成したC1-36は,黒鉛表面の酸化等により開孔部から表面に移行し, 炭酸ガス中の湿分と反応しHC1の形態として黒鉛表面に存在していると考えられ,汚 染のSF法が大きいと考える。

以上により,C1-36以外の核種については,過度に保守的な値となっていないこと, また,C1-36については,実測値を用いることにより,適切な被ばく線量評価が行え ると考え,核種選定において,SF法及び平均放射能濃度法を使用することは妥当である と考える。

SF及び平均放射能濃度の設定について

1.SFの設定方法

対象核種は, C - 14, CI - 36, Ni - 63 及び Sr - 90 であり, 東海発電所に設置されて いる汚染形態ごとの機器のサンプルリングを実施し, データを集計している。

key 核種の放射能濃度とSF適用核種の放射能濃度とのt検定を行い,相関が成立した場合,統計処理で求めた放射能濃度比をSFとして設定している。また,ガス系及び 廃液系の発生系統ごとの分類要否については,分散分析検定(F検定)を実施し,分類 不要と評価しているため,全てのサンプリングデータを用いてSFを設定している。

C - 14, CI - 36 及びNi - 63 とCo - 60 とのSF相関図を第1図,第2図及び第3図に Sr - 90 とCs - 137 とのSF相関図を第4図に,SFを第1表に示す。

2. 平均放射能濃度値の設定方法

対象核種は,H-3 であり,SF値と同様に東海発電所に設置されている機器及び床の性状ごとにH-3の平均放射能濃度にL3対象物の物量を乗じて,廃棄物の濃度を設定している。

H-3の平均放射能濃度の値を第2表に示す。

第2図 CI-36/Co-60のSF相関図

第4図 Sr - 90 / Cs - 137 の SF 相関図

第1	表	S	F設定値	(原子)	炉停止時)
----	---	---	------	------	-------

SF適用核種 / key核種	S F
C - 14 / C o - 60	2.6×10 ⁻¹
Cl-36/Co-60	1.4×10 ¹
Ni-63/Co-60	7.9×10 ⁻¹
Sr-90/Cs-137	1.9×10 °

第2表 H-3の平均放射能濃度(原子炉停止時)

	廃棄物の性状	平均放射能濃度(Bq/t)			
ギフズ	金属	2.2×10 ⁸			
リス余	金属 コンクリート	3.3 × 10 ⁶			
廃液系	金属 / コンクリート	5.9×10⁵			

(参考-4)

CL濃度基準と比較する際に使用する平均放射能濃度の設定について

主要な放射性核種の選定は,第1図に基づき行う。そのうち,150核種から37核種を抽 出する際に,CL濃度基準と比較して十分小さい核種は,被ばく線量への寄与が小さいため 除外できるとし,核種ごとの平均放射能濃度がCL濃度基準の1万分の1(0.0001)以上の ものを選定している。この平均放射能濃度の設定の考え方は以下のとおりである。

1.平均放射能濃度の設定について

L3対象物の性状は,金属とコンクリートであり,それぞれ容器に封入又は梱包して埋設地に埋設する。よって,廃棄物埋設施設全体の平均放射能濃度とするため,CL濃度基準と比較する際に使用する平均放射能濃度の設定については,埋設する廃棄物の核種ごとの総放射能量(Bq)を埋設する廃棄物の総物量(ton)で除して算出しているが,念のため,L3対象物の性状(金属,コンクリート)ごとに算出した平均放射能濃度をCL濃度基準で除した値(D/C)が判定値(0.0001)以上になる核種を確認した。

2.確認結果

第1表より,37核種以外に,金属からMo-93及びAm-242m,コンクリートからI -129の3核種が抽出されたが,抽出された核種のD/Cは,判定値(0.0001)と同等で あることから,CL濃度基準と比較して十分小さい核種であり,被ばく線量への寄与が小 さいため,埋設する廃棄物の核種ごとの総放射能量(Bq)を埋設する廃棄物の総物量(ton) で除して求めた平均放射能濃度の設定の考え方に問題はないと考える。

第1図 選定フロー

			CL	濃度基準 (B	q/g)	金属 コンクリート		属 コンクリ		金属	コンクリート
NO	核種	放射能量(Bq)		20.2	評価に使	平均濃度		平均濃度		D/C5S	D/Cが
	10.500 A	11-12-12-12-12-12-12-12-12-12-12-12-12-1	法令**	IAEA	用する値	(Ba/g)	D/C	(Ba/g)	D/C	0.0001 KL F	0.0001 PL E
1	U_2	1 15+12	100	100	100	715+01	715-01	6 0E+01	6 0E-01	0.0001.011	0.0001121
	B10	2.25+05	100	100	100	F.4E-0E	F 4E-04	6.35-07	6.3E-01	- ×	0
2	De-10	0.4E+00	1		0,1	3.4E-03	J.4E 04	0.3E-07	0.3E-00		0
	C: 20	9.4E+09	- '		01	1.2E+00	1.2E+00	2.35-01	2.3E-01		0
4	51-32	2.1E+00		100	0.1	3.4E-10	3.4E-09	8.2E-12	8.2E-11		C
5	S-35	3.6E-09		100	100	2./E-21	2./E-23	3.6E-19	3.6E-21		
6	CI-36	3.8E+10	1	1	1	6.1E+01	6.1E+01	6.5E-01	6.5E-01	0	0
7	K-40	3.2E+07		10	10	1.4E-08	1.4E-09	3.2E-03	3.2E-04		0
8	Ca-41	2.8E+09	100	1	100	2.0E-03	2.0E-05	2.8E-01	2.8E-03		0
9	Ca-45	1.3E-01		100	100	1.4E-14	1.4E-16	1.3E-11	1.3E-13		e) (C) (A)
10	Sc-46	1.8E-09	0.1	0.1	0.1	6.7E-23	6.7E-22	1.8E-19	1.8E-18		1
11	Mn-54	5.0E+03	0.1	0.1	0.1	7.7E-07	7.7E-06	2 3E-08	23E-07		
12	Fe-55	1.6E+11	1000	1000	1000	24E+01	2 4E-02	87E-01	8 7E-04	0	0
12	Fo=50	1.95-20	1000	1000	1000	2.0E-49	2.42 02	1.65-70	1 6E-70		
14	re 55	7.05 00				3.0E 40	1.0E 40	7.05 50	T.OE 73		-
14	00-38	7.9E-23				1.3E-32	1.3E-32	7.2E-33	7.2E-33		0
15	Co-60	1.0E+11	0.1	0.1	0.1	1.6E+01	1.6E+02	8.2E-01	8.2E+00	0	0
16	Ni 59	3.5E+08	100	100	100	5.7E-02	5.7E-04	7.9E-04	7.9E-06	0	-
17	Ni-63	5.5E+10	100	100	100	8.8E+00	8.8E-02	1.2E-01	1.2E-03	0	0
18	Zn-65	6.1E+01	0.1	0.1	0.1	8.2E-09	8.2E-08	1.1E-09	1.1E-08		a
19	Se-75	2.5E-09		1	1	4.1E-19	4.1E-19	1.7E-21	1.7E-21		
20	Se-79	7.8E+03		(i(i	0.1	1.1E-06	1.1E-05	1.2E-07	1.2E-06		
21	Rb-87	2.2E+06		i i	0.1	8.5E-08	8.5E-07	2.2E-04	2.2E-03		0
22	Sr-85	2.6E-28		1	1	4.3E-38	4.3E-38	4.5E-60	4.5E-60		
23	Sr-89	4.6E-33		1000	1000	7.6F-43	7.6F-46	1.1E-69	1.1E-72		
24	Sr-90	1.3E+09	1	1	1	2.0F-01	2.0E-01	1.0E-02	1.0F-02	0	0
25	Y-91	1.3E-97		100	100	215-27	215-20	1 15-60	1 15-62	<u> </u>	~
20	7-02	2.00-27		100	100	2.15 00	2.12 -39	2.05 04	2.05.05	0	-
20	21-93	2.22+08		10	10	3.5E-02	3.5E-03	3.8E-04	3.6E-05	0	.
27	2r-95	3.8E-22		1	1	6.2E-32	6.2E-32	3.1E-36	3.1E-36	-	
28	Nb-93m	1.6E+08		10	10	2.7E-02	2.7E-03	3.2E-04	3.2E-05	0	
29	Nb 94	2.7E+06	0.1	0.1	0.1	2.7E-04	2.7E-03	1.0E 04	1.0E-03	0	0
30	Nb-95	1.2E-24	1	1	1	1.9E-34	1.9E-34	6.8E-36	6.8E-36		
31	Mo-93	1.2E+07		10	10	1.9E-03	1.9E-04	1.7E-05	1.7E-06	0	
32	Tc-98	1.0E-02			0.1	1.6E-12	1.6E-11	3.5E-14	3.5E-13		
33	Tc-99	3 9E+05	1	1	1	5 9E-05	5 9E-05	2.65-06	2.65-06		-
34	Du=102	2.65-44				5 0E-54	5.0E-54	2.00 00	2.00 00	-	
04	Ru-105	3.0E 44	0.1	0.1	0.1	5.3E 04	5.3E 04	2.70 00	2.72 00		
35	Ru-100	3.5E+03	0.1	0.1	0.1	5.4E-07	5.4E-00	2.0E-08	2.0E-07		3
30	Rh-102	4.2E+00		-	0.1	3.8E-10	3.8E-09	1.9E-10	1.9E-09		e
3/	Pd-107	1.3E+03			0.1	1.6E-07	1.6E-06	2.9E-08	2.9E-07		
38	Ag-108m	1.4E+07	0.1		0.1	2.0E-03	2.0E-02	1.1E-04	1.1E-03	0	0
39	Ag-110m	1.4E+00	0.1	0.1	0.1	2.2E-10	2.2E-09	7.5E-12	7.5E-11		
40	Cd-109	3.8E+02		1	1	6.1E-08	6.1E-08	6.6E-10	6.6E-10		
41	Cd-113m	1.7E+05		n n	0.1	2.4E-05	2.4E-04	1.5E-06	1.5E-05	0	
42	Cd-115m	1.8E-40		100	100	3.0E 50	3.0E 52	4.1E-81	4.1E-83		
43	In-114m	2.4E-38		10	10	3.9E-48	3.9E-49	2.3E-76	2.3E-77		
44	In-115	9.2E+00			0.1	1.2E-16	1.2E-15	9.4E-10	9.4E-09		
45	Sn-113	4 5E-15		1	1	7 3E-25	7 3E-25	6 0E-38	6.0E-38		-
46	Sn=110m	4.5E-02			01	7.95-12	7.00 20	9.0E-15	9.0E-14		<u>i</u>
40	Sn 101	4.02 03			0.1	7.5E 13	7.5E 12	0.50 10	0.50 14		
4/	Sn=121m	2.8E+04			0,1	6.TE-07	0.TE-00	2.5E-00	2.5E-05		
48	Sn-123	2.4E-10			0.1	3.7E-20	3./E-19	1.3E-21	1.3E-20		1
49	Sn-126	8.8E+03			0.1	1.3E-06	1.3E-05	1.1E-07	1.1E-06		() () () () () () () () () () () () () (
50	Sb-124	1.7E-28	1	1	1	2.7E-38	2.7E-38	8.4E-62	8.4E-62		
51	Sb-125	8.4E+05		0.1	0.1	1.2E-04	1.2E-03	1.1E-05	1.1E-04	0	0
52	Te-121m	0.0E+00			0.1	0.0E+00	0.0E+00	0.0E+00	0.0E+00		
53	Te-123m	2.6E-09	1	1	1	4.2E-19	4.2E-19	1.7E-21	1.7E-21		
54	Te-125m	2.0E+05		1000	1000	2.9E-05	2.9E-08	2.6E-06	2.6E-09		F 8
55	Te-127m	2.4E-07		10	10	1.2E-22	1.2E-23	2.5E-17	2.5E-18	2	
56	Te-129m	3.7E-54		10	10	6.0E-64	6.0E-65	5.9E-104	5.9E-105		
57	I-129	1.1E+04	0.01	0.01	0.01	5.6F-08	5.6E-06	1.1E-06	1.1E-04		0
58	Cs=134	1.3E+07	0.01	0.01	0.01	6.3E-05	6.3E-04	1.3E-03	1.3E-02	0	õ
50	Cc-125	1.102+07	0.1	100	100	1.55-00	1.55-00	1.00-03	1.00-02		<u> </u>
60	05-133	7.55.00	0.1	100	100	1.5E-06	1.00-08	0.55.00	0.55.00	0	
00	05-13/	7.5E+08	0.1	0.1	0.1	1.1E-01	1.1E+00	0.0E-03	0.0E-02		0
61	Ba-133	7.3E+07	0.1		0.1	1.4E-04	1.4E-03	7.4E-03	7.4E-02	0	0
62	La-137	1.2E+04			0.1	7.5E-08	7.5E-07	1.2E-06	1.2E-05		
63	La-138	7.0E+02			0.1	2.9E-11	2.9E-10	7.1E-08	7.1E-07	-	
64	Ce-139	2.8E-09		1	. 1	4.6E-19	4.6E-19	1.9E-21	1.9E-21		
65	Ce-141	1.5E-54		100	100	2.4E-64	2.4E-66	1.1E-105	1.1E-107		
66	Ce-144	1.6E+02		10	10	2.5E-08	2.5E-09	9.1E-10	9.1E-11		
67	Nd-144	1.4E+01			01	2.7E-15	2.7E-14	1.4E-09	1.4E-08		
68	Pm-145	5.1E+06			0.1	3.2E-05	3.2E-04	5.0E-04	5.0F-03	0	0
60	Pm-147	1.5E+07		1000	1000	1 95-02	105-04	345-04	345-07	<u> </u>	
70	Des 140	6.65 44		1000	1000	1.00 03	1.00-00	0.4E 04	0.46-07		-
10	Pm-148m	0.0E-44		, , , , , , , , , , , , , , , , , , ,	0.1	1.1E-53	1.1E-52	2.2E-86	Z.ZE-85		
/1	Sm-145	5./E+00		-	0.1	3.5E-11	3.5E-10	5.6E-10	5.6E-09		
72	Sm-146	2.9E-03			0.1	1.6E-13	1.6E-12	1.9E-13	1.9E-12		
73	Sm-147	1.9E+04			0.1	4.5E-09	4.5E-08	1.9E-06	1.9E-05		
74	Sm-148	1.9E-01		1	0.1	4.5E-14	4.5E-13	1.9E-11	1.9E-10	-	1
75	Sm-151	3.9E+08		1000	1000	2.3E-03	2.3E-06	3.9E-02	3.9E-05		
76	Eu-152	4.6E+10	0.1	0.1	0.1	6.5E-02	6.5E-01	4.6E+00	4.6E+01	0	0
77	Eu-154	2.1E+09	01	0.1	01	7.4E-03	7.4F-02	2.0F-01	2.0F+00	Ô	0
78	Eu-155	3 0E+07	v.1	1	1	4.8E-04	4.8E-04	275-02	275-02	ŏ	ŏ
70	Cd-150	5.02107				9.0E-04	9.0E-04	E.0E 11	E.05 10		0
19	01 152	5.9E-01	<u> </u>		0.1	2.2E-14	2.2E-13	0.0E-11	0.0E-10	-	-
80	Gd-153	1.0E+00		10	10	7.3E-12	7.3E-13	1.0E-10	1.0E-11		

第1表 放射能濃度がCL濃度基準の1万分の1以上となる核種(1/2)

			CL	濃度基準(B	q/g)	金	属	コンク	リート	金属	コンクリート
NO	核種	放射能量(Bq)	法令 ^{※1}	IAEA ^{**2}	評価に使 用する値	平均濃度 (Bq/g)	D/C	平均濃度 (Bq/g)	D/C	D/Cが 0.0001以上	D/Cが 0.0001以上
81	Tb-157	9.4E+05	-		0.1	2.0E-06	2.0E-05	9.5E-05	9.5E-04		0
82	Tb-160	8.0E-24	1	1	1	1.3E-33	1.3E-33	2.9E-36	2.9E-36		
83	Dy-159	1.9E-12			0.1	3.1E-22	3.1E-21	6.5E-33	6.5E-32		0
04	Ho-166m	2.0E+00			0.1	2.5E-05	2.5E-04	2.7E-04	2.7E-03	0	<u> </u>
86	Tm-170	1.9E-13	8	100	100	3.2E-23	3.2E-25	2.2E 04	2.2E-03		
87	Tm-171	1.2E+05		1000	1000	3.5E-10	3.5E-13	1.0L 20	1.2E-08		
88	Yb-169	5.8E-61			0.1	9.4E-71	9.4E-70	1.4E-113	1.4E-112		
89	Lu-176	1.3E+03		8	0.1	1.2E-09	1.2E-08	1.4E-07	1.4E-06		C
90	Lu-177m	4.2E-03	l l	í.	0.1	5.8E-13	5.8E-12	7.2E-14	7.2E-13		
91	Hf-175	8.5E-26			0.1	1.4E-35	1.4E-34	4.6E-56	4.6E-55		
92	Hf-181	1.0E-40		1	1	1.7E-50	1.7E-50	2.9E-83	2.9E-83		
93	Hf-182	4.2E+00			0.1	6.8E-10	6.8E-09	7.4E-12	7.4E-11		
94	Ta-180	2.6E-02	0.1	0.1	0.1	1.0E-14	1.0E-13	2./E-12	2./E-11		
95	1a-182	4.0E+00	0.1	0.1	0.1	0.0E-10	0.0E-09	2./E-12 1.5E-26	2./E-11		
97	W-185	1.3E-12		1000	1000	2 1E-22	4.7E-25	5.3E-26	5.3E-29		
98	W-188	2.8E-27		1000	0.1	4.6E-37	4.6E-36	1.3E-57	1.3E-56		
99	Re-187	1.2E+01			0.1	1.4E-09	1.4E-08	3.7E-10	3.7E-09		
100	Os-194	5.2E-06			0.1	8.5E-16	8.5E-15	4.6E-18	4.6E-17		
101	Ir-192	2.9E+06		1	1	3.0E-07	3.0E-07	2.9E-04	2.9E-04		0
102	Ir-192m	2.9E+06		<u>()</u>	0.1	3.0E-07	3.0E-06	2.9E-04	2.9E-03		0
103	Pt-190	3.7E+01			0.1	0.0E+00	0.0E+00	3.8E-09	3.8E-08		
104	Pt-193	1.3E+07	-	10	0.1	2.4E-09	2.4E-08	1.3E-03	1.3E-02		0
105	Hg-203	6.8E-47		10	10	1.1E-56	1.1E-5/	1.3E-86	1.3E-87		0
100	Db-204	1.8E+00	-	1	01	1.4E-12	1.4E-12	1.8E-04	1.8E-04		0
107	Pb-204	0.2E-03			0.1	1.1E-09	1.1E-08	9.2E-10	9.0E-12		1
109	Pb-210	2.1E+00	0	1	0.1	8.2E-11	8.2E-11	1.6E-10	1.6E-10		
110	Bi-208	9.0E-02			0.1	2.7E-12	2.7E-11	7.5E-12	7.5E-11		
111	Bi-210m	2.3E+00	1		0.1	7.7E-12	7.7E-11	2.3E-10	2.3E-09		
112	Po-210	1.9E+00	- 8	1	1	8.1E-11	8.1E-11	1.4E-10	1.4E-10		
113	Ra-226	5.8E+00		1	1	2.5E-10	2.5E-10	4.3E-10	4.3E-10		
114	Ra-228	8.5E+05		1	1	3.8E-08	3.8E-08	8.6E-05	8.6E-05		
115	AC-22/	1.6E+02				1.2E-09	1.2E-09	1.6E-08	1.6E-08		
117	Th-220	0.5E+05		01	01	6.8E-10	6.8E-00	0.0E-03	0.0E-03		
118	Th-230	5.6E+02		0.1	1	3.0E-08	3.0E-08	3.9E-08	3.9E-08		
119	Th-232	8.5E+05		1	1	3.8E-08	3.8E-08	8.7E-05	8.7E-05		
120	Pa-231	2.6E+02		1	1	2.4E-09	2.4E-09	2.5E-08	2.5E-08		
121	U-232	1.5E+02	0.1	0.1	0.1	2.1E-08	2.1E-07	1.8E-09	1.8E-08		
122	U-233	2.8E+05		1	1	2.0E-07	2.0E-07	2.8E-05	2.8E-05		
123	U-234	1.5E+06	1	1	1	9.8E-05	9.8E-05	8.8E-05	8.8E-05		
124	U-235	4.9E+04	1	1	1	1.8E-06	1.8E-06	3.8E-06	3.8E-06		
125	0-236	3.5E+03	10	10	10	5.0E-07	5.0E-08	4.4E-08	4.4E-09		
120	Np-236	6.9E-04	-		01	4.2E-03	4.2E-03	8.4E-00	8.4E-03		
128	Np-237	1.4E+03		1	0.1	2.0E-07	2.0E-07	1.7E-08	1.7E-08		
129	Pu-236	4.5E-01		1	1	6.9E-11	6.9E-11	2.9E-12	2.9E-12		
130	Pu-238	4.6E+06		0.1	0.1	6.6E-04	6.6E-03	5.0E-05	5.0E-04	0	0
131	Pu-239	1.3E+07	0.1	0.1	0.1	1.8E-03	1.8E-02	2.3E-04	2.3E-03	0	0
132	Pu-240	1.1E+07		0.1	0.1	1.6E-03	1.6E-02	1.4E-04	1.4E-03	0	0
133	Pu-241	3.8E+08	10	10	10	5.7E-02	5.7E-03	3.6E-03	3.6E-04	0	0
134	Pu-242	5.6E+03		0.1	0.1	8.0E-07	8.0E-06	0.9E-08	0.9E-07		
136	Am-244	2.2E+07	0.1	0.1	0.1	3.5E-03	3.5E-02	3.4E-04	3.4E-03	0	0
137	Am-242m	1.2E+05	0.1	0.1	0.1	1.8E-05	1.8E-04	1.5E-06	1.5E-05	ŏ	<u> </u>
138	Am-243	1.3E+04		0.1	0.1	1.9E-06	1.9E-05	1.5E-07	1.5E-06		
139	Cm-242	9.3E+04	8	10	10	1.4E-05	1.4E-06	6.1E-07	6.1E-08		
140	Cm-243	8.0E+03		1	1	1.2E-06	1.2E-06	8.6E-08	8.6E-08		
141	Cm-244	2.0E+05		1	1	3.0E-05	3.0E-05	1.5E-06	1.5E-06		
142	Cm-245	7.3E+00		0.1	0.1	1.1E-09	1.1E-08	6.1E-11	6.1E-10		
143	Cm-246	7.0E+00	_	0.1	0.1	1.1E-09	1.1E-08	2.6E-11	2.6E-10		
144	Cm=247	1.5E-05		0.1	0.1	2.3E-15	2.3E-14	3.2E-17	3.2E-16		
140	Cm-250	2 9E-12		0.1	0.1	4.7E-14	4.7E-21	4 9E-24	4 9E-22		
147	Cf-249	4.3E-04	1	01	0.1	7.0E-14	7.0E-13	4.6E-16	4.6E-15		
148	Cf-250	2.0E-03		1	1	3.3E-13	3.3E-13	2.4E-15	2.4E-15		
149	Cf-251	2.0E-05	î	0.1	0.1	3.2E-15	3.2E-14	3.5E-17	3.5E-16		
150	Cf-252	8.8E-05	i in di	1	1	1.4E-14	1.4E-14	6.1E-17	6.1E-17		

第1表 放射能濃度がCL濃度基準の1万分の1以上となる放射性核種(2/2)

※1:「製錬事業者等における工場等において用いた資材その他の物に含まれる放射性物質の放射能濃度についての確認等に関する規則」 ※2:「IAEA SAFETY GUIDE Application of the Concepts of Exclusion, Exemption and Clearance」

放射化放射性物質濃度の計算に用いた構成材の元素組成

			ステンレス鋼(SUS304)	炭素鋼	炭素鋼(鉄筋)	コンクリート	アルミニウム
	二主	二主	解体届	解体届	解体届	解体届	解体届
No.	兀系 悉只	兀系	ORIGEN	ORIGEN	ORIGEN	ORIGEN	ORIGEN
	ш つ		入力値	入力値	入力值	入力值	入力值
			wt%	wt%	wt%	wt%	wt%
1	1	Н	_			8.3E-01	
2	3	Li	6.0E-06	<u>5.0E-06</u>	4.0E-06	2.0E-03	1.0E-05
3	4	B	6.1E-03	1.0E-05 1.0E-03	1.0E-05 1.0E-03	9.0E-05 2.7E-03	3.0E-07 1.0E-03 2
5	6	C	6.1E-04	9.1E-02	1.5E-01	2.9E-01	9.0E-05
6	7	Ň	2.7E-01	5.7E-03	4.2E-03	3.5E-02	5.0E-04
7	8	0		1.8E-03	2.0E-03	4.7E+01	2.0E-03 2
8	9 11	F Na	9.7E_0/ 1	2 0E-05	2 0E-05	3.4E-02 1.4E+00	2 0E-05 2
10	12	Ma	4.9E-04	6.0E-04	5.0E-04	7.5E-01	2.9E-03
11	13	Al	8.6E-02	2.6E-02	5.0E-03	5.3E+00	9.6E+01
12	14	Si	7.0E-01	2.7E-01	2.2E-01	3.0E+01	8.3E-02
13	15	P	4.3E-02	6.5E-03	1.1E-02	2.9E-02	4.3E-05
14	10	CI	3.0F-03	<u>2.4E-02</u> 1.0E-03	1.5E-02	6.0F-03	1.0F-03
16	19	K	1.0E-04	4.9E-06	9.0E-07	1.7E+00	1.2E-06
17	20	Ca	1.5E-04	2.8E-06	3.0E-05	8.3E+00	1.6E-05
18	21	Sc	1.0E-05	1.7E-06	1.0E-07	9.3E-04	7.4E-06
20	22	V	3.3E-U1 4.6E-02 1	0.1E-04 4 0F-04	4.0E-04 5.0E-04	2.2E-01 1.5E-02	7.2E-03 5.0E-04 2
21	24	Čr	1.8E+01	1.3E-01	4.5E-02	2.8E-03	1.2E-03
22	25	Mn	1.4E+00	1.4E+00	4.9E-01	4.4E-02	3.8E-03
23	26	Fe	7.1E+01	9.7E+01	9.8E+01	2.2E+00	2.8E-01
24 25	27	CO Ni	1.8E-01 1.0F+01	1.4E-02 1.6E-01	1.4E-02 7.1E-02	0.0E-04 1.2E-03	9.2E-05 3.2E-03
26	29	Cu	3.3E-01	2.0E-01	1.9E-01	2.0E-03	3.4E-03
27	30	Zn	2.2E-03	1.6E-03	6.0E-03	9.3E-03	3.7E-03
28	31	Ga	1.3E-02 1	1.2E-03	1.8E-03	8.4E-04	1.0E-06
29	32	Ge	1 OF 02 1	2.25 0.2	2 6E 02	1./E-04	2 GE 02 2
30	34	Se	8.0F-04	<u>2.22-02</u> 1.0F-05	1.0F-02	6.0F-06	1.0F-02 2
32	35	Br	2.0E-04 1	1.5E-03	1.5E-03	5.0E-05	1.5E-03 2
33	37	Rb	1.0E-03 1	1.0E-05	1.0E-05	4.0E-03	1.0E-05 2
34	38	Sr	2.0E-05 1	<u>1.0E-05</u>	1.0E-05	3.1E-02	1.0E-05 2
35	39 40	ř Zr	2.0E-04 I	<u> </u>	2.0E-05 1.0E-04	2.3E-03 5.3E-03	2.0E-05 2 1.2E-03
37	41	Nb	2.8E-02	1.6E-05	2.0E-04	6.2E-04	8.2E-06
38	42	Мо	1.9E-01	4.5E-02	1.0E-02	1.0E-04	4.0E-05
39	46	Pd	1.45.02			2.0E-04	2.05.06
40	47	Ag Cd	1.4E-03	2.0E-04	1.0E-05	2.0E-05	2.0E-00
42	49	In				7.0E-05	
43	50	Sn				3.2E-04	
44	51	Sb	1.2E-03 1	3.2E-03	6.7E-03	2.7E-04	6.7E-03 2
45	53	I I				9.2E-02 5.0E-04	
47	55	Ċs	3.0E-06	1.0E-06	1.0E-06	2.4E-04	1.0E-07
48	56	Ba	4.0E-06	2.0E-06	1.6E-05	4.2E-02	8.0E-07
49	57	La	2.0E-05 1	5.0E-06	5.0E-06	1.9E-03	5.0E-06 2
51	59	Pr	0.UE-U0	2.UE-U0	2.UE-U0	3.0E-03 8.0F-04	J.UE-U0
52	60	Nd				2.2E-03	
53	62	Sm	7.0E-06	2.0E-06	2.0E-06	2.5E-04	4.0E-06
54	63	Eu	2.0E-06	1.0E-06	1.0E-06	6.0E-05	1.0E-07
56	65	Th	2.0E-06	1.0E-06	1.0E-06	4.0E-05	2.0E-06
57	66	Dy	<u>1.0E-04</u> 1			2.5E-04	
58	67	Ho	2.0E-06	1.0E-06	1.0E-06	5.0E-05	2.1E-06
59	68	Er				3.2E-04	
61	70	Yh	2.0F-04 1	2.0F-06	2.0F-06	3.6E-03	2.0F-06 2
62	71	Lu	<u>8.0E-05</u> 1	<u>2.0E-</u> 06	2.0E-06	<u>3.4E-0</u> 5	<u>2.0E-06</u> 2
63	72	Hf	2.0E-04 1	2.0E-06	2.0E-06	3.0E-04	2.0E-06 2
64	73	Ta	2.2E-04	3.0E-06	3.0E-06	8.0E-05	2.0E-06
60 66	77	VV Ir	4.0E-02	1.5E-U3	9.0E-04	7.8E-04 2.0F-07	2.UE-U0
67	78	Pt				4.2E-03	
68	79	Au				4.0E-07	
69	80	Hg				2.0E-05	
70	81 82	II Ph	67E-03 1	1 1F-03	1 1F-03	3.0E-05 2.0E-03	1 1F-03 ?
72	83	Bi				3.0E-05	
73	90	Th	1.0E-04 1	1.0E-06	1.0E-06	3.5E-04	1.0E-06 2
74	92	U	1.0E-06	2.0E-06	1.0E-06	1.1E-04	3.2E-04

注) 以下のデータ以外は , 分析値を示す。 1 US. Nuclear Regulatory Commission (1984) : Long-lived Activation Products in Reactor Materials , NUREG/CR-3474 2 本表の [「]炭素鋼(鉄筋)」の値に設定